4,672 research outputs found

    A framework for evaluating stereo-based pedestrian detection techniques

    Get PDF
    Automated pedestrian detection, counting, and tracking have received significant attention in the computer vision community of late. As such, a variety of techniques have been investigated using both traditional 2-D computer vision techniques and, more recently, 3-D stereo information. However, to date, a quantitative assessment of the performance of stereo-based pedestrian detection has been problematic, mainly due to the lack of standard stereo-based test data and an agreed methodology for carrying out the evaluation. This has forced researchers into making subjective comparisons between competing approaches. In this paper, we propose a framework for the quantitative evaluation of a short-baseline stereo-based pedestrian detection system. We provide freely available synthetic and real-world test data and recommend a set of evaluation metrics. This allows researchers to benchmark systems, not only with respect to other stereo-based approaches, but also with more traditional 2-D approaches. In order to illustrate its usefulness, we demonstrate the application of this framework to evaluate our own recently proposed technique for pedestrian detection and tracking

    Automatic aerial target detection and tracking system in airborne FLIR images based on efficient target trajectory filtering

    Get PDF
    Common strategies for detection and tracking of aerial moving targets in airborne Forward-Looking Infrared (FLIR) images offer accurate results in images composed by a non-textured sky. However, when cloud and earth regions appear in the image sequence, those strategies result in an over-detection that increases very significantly the false alarm rate. Besides, the airborne camera induces a global motion in the image sequence that complicates even more detection and tracking tasks. In this work, an automatic detection and tracking system with an innovative and efficient target trajectory filtering is presented. It robustly compensates the global motion to accurately detect and track potential aerial targets. Their trajectories are analyzed by a curve fitting technique to reliably validate real targets. This strategy allows to filter false targets with stationary or erratic trajectories. The proposed system makes special emphasis in the use of low complexity video analysis techniques to achieve real-time operation. Experimental results using real FLIR sequences show a dramatic reduction of the false alarm rate, while maintaining the detection rate

    Effective evaluation of privacy protection techniques in visible and thermal imagery

    Get PDF
    Privacy protection may be defined as replacing the original content in an image region with a new (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed the development of privacy protection techniques needs also to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgements or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. This paper proposes a new annotation-free evaluation method that is neither subjective nor assumes a specific target type. It assesses two key aspects of privacy protection: protection and utility. Protection is quantified as an appearance similarity and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences) including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for community. We demonstrate effectiveness of proposed method by evaluating six image-based privacy protection techniques, and also show comparisons of proposed method over existing methods

    Registration of Airborne Infrared Images using Platform Attitude Information

    Get PDF
    In current warfare scenario stealth and passive threat detection capabilities are considered as prime requirements to accomplish desired mission by the fighter aircrafts. To improve the stealth of an aircraft, the trend is towards detecting threats with the help of passive sensors (Electro Optic or Infrared). Current situation caters for systems like Infra-red Search and Track (IRST) and Passive Missile Warning Systems (PMWS). IRST system is a passive target detection system, used for detecting aerial & ground targets. PMWS is a threat detection system used for detecting missiles approaching towards aircraft. Both of these systems detect targets of interest by processing IR images acquired in mid-IR region. The prime challenge in IRST system or PMWS is detecting a moving target of size typically 1~2 pixels in acquired image sequences. The temporal change caused by moving target in consecutive frames can be considered as one important factor to detect them. The temporal change caused by moving target is identified through absolute frame differencing of successive frames. This principle has limitation in application to IRST & PMWS as the imaging sensor with the aircraft is moving. This motion also imparts temporal change in the acquired images. In this paper authors are proposing a method for removing the temporal change caused by the platform motion in two consequently acquired frames using registration process.  The proposed method uses the platform attitude information at frame sampling times. Authors have analyzed the sensitivity of registration process to noisy platform attitude information.Defence Science Journal, 2014, 64(2), pp. 130-135. DOI: http://dx.doi.org/10.14429/dsj.64.546
    corecore