3,012 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    DropIn: Making Reservoir Computing Neural Networks Robust to Missing Inputs by Dropout

    Full text link
    The paper presents a novel, principled approach to train recurrent neural networks from the Reservoir Computing family that are robust to missing part of the input features at prediction time. By building on the ensembling properties of Dropout regularization, we propose a methodology, named DropIn, which efficiently trains a neural model as a committee machine of subnetworks, each capable of predicting with a subset of the original input features. We discuss the application of the DropIn methodology in the context of Reservoir Computing models and targeting applications characterized by input sources that are unreliable or prone to be disconnected, such as in pervasive wireless sensor networks and ambient intelligence. We provide an experimental assessment using real-world data from such application domains, showing how the Dropin methodology allows to maintain predictive performances comparable to those of a model without missing features, even when 20\%-50\% of the inputs are not available

    Deep Transductive Transfer Learning for Automatic Target Recognition

    Full text link
    One of the major obstacles in designing an automatic target recognition (ATR) algorithm, is that there are often labeled images in one domain (i.e., infrared source domain) but no annotated images in the other target domains (i.e., visible, SAR, LIDAR). Therefore, automatically annotating these images is essential to build a robust classifier in the target domain based on the labeled images of the source domain. Transductive transfer learning is an effective way to adapt a network to a new target domain by utilizing a pretrained ATR network in the source domain. We propose an unpaired transductive transfer learning framework where a CycleGAN model and a well-trained ATR classifier in the source domain are used to construct an ATR classifier in the target domain without having any labeled data in the target domain. We employ a CycleGAN model to transfer the mid-wave infrared (MWIR) images to visible (VIS) domain images (or visible to MWIR domain). To train the transductive CycleGAN, we optimize a cost function consisting of the adversarial, identity, cycle-consistency, and categorical cross-entropy loss for both the source and target classifiers. In this paper, we perform a detailed experimental analysis on the challenging DSIAC ATR dataset. The dataset consists of ten classes of vehicles at different poses and distances ranging from 1-5 kilometers on both the MWIR and VIS domains. In our experiment, we assume that the images in the VIS domain are the unlabeled target dataset. We first detect and crop the vehicles from the raw images and then project them into a common distance of 2 kilometers. Our proposed transductive CycleGAN achieves 71.56% accuracy in classifying the visible domain vehicles in the DSIAC ATR dataset.Comment: 10 pages, 5 figure

    Machine Vision Identification of Plants

    Get PDF
    corecore