14 research outputs found

    Defining and quantifying microscale wave breaking with infrared imagery

    Get PDF
    Breaking without air entrainment of very short wind-forced waves, or microscale wave breaking, is undoubtedly widespread over the oceans and may prove to be a significant mechanism for enhancing the transfer of heat and gas across the air-sea interface. However, quantifying the effects of microscale wave breaking has been difficult because the phenomenon lacks the visible manifestation of whitecapping. In this brief report we present limited but promising laboratory measurements which show that microscale wave breaking associated with evolving wind waves disturbs the thermal boundary layer at the air-water interface, producing signatures that can be detected with infrared imagery. Simultaneous video and infrared observations show that the infrared signature itself may serve as a practical means of defining and characterizing the microscale breaking process. The infrared imagery is used to quantify microscale breaking waves in terms of the frequency of occurrence and the areal coverage, which is substantial under the moderate wind speed conditions investigated. The results imply that ”bursting“ phenomena observed beneath laboratory wind waves are likely produced by microscale breaking waves but that not all microscale breaking waves produce bursts. Oceanic measurements show the ability to quantify microscale wave breaking in the field. Our results demonstrate that infrared techniques can provide the information necessary to quantify the breaking process for inclusion in models of air-sea heat and gas fluxes, as well as unprecedented details on the origin and evolution of microscale wave breaking

    Sea surface temperature signatures of oceanic internal waves in low winds

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C06014, doi:10.1029/2006JC003947.In aerial surveys conducted during the Tropical Ocean–Global Atmosphere Coupled Ocean-Atmosphere Response Experiment and the low-wind component of the Coupled Boundary Layer Air-Sea Transfer (CBLAST-Low) oceanographic field programs, sea surface temperature (SST) variability at relatively short spatial scales (O(50 m) to O(1 km)) was observed to increase with decreasing wind speed. A unique set of coincident surface and subsurface oceanic temperature measurements from CBLAST-Low is used to investigate the subsurface expression of this spatially organized SST variability, and the SST variability is linked to internal waves. The data are used to test two previously hypothesized mechanisms for SST signatures of oceanic internal waves: a modulation of the cool-skin effect and a modulation of vertical mixing within the diurnal warm layer. Under conditions of weak winds and strong insolation (which favor formation of a diurnal warm layer), the data reveal a link between the spatially periodic SST fluctuations and subsurface temperature and velocity fluctuations associated with oceanic internal waves, suggesting that some mechanism involving the diurnal warm layer is responsible for the observed signal. Internal-wave signals in skin temperature very closely resemble temperature signals measured at a depth of about 20 cm, indicating that the observed internal-wave SST signal is not a result of modulation of the cool-skin effect. Numerical experiments using a one-dimensional upper ocean model support the notion that internal-wave heaving of the warm-layer base can produce alternating bands of relatively warm and cool SST through the combined effects of surface heating and modulation of wind-driven vertical shear.We gratefully acknowledge funding for this research from the Office of Naval Research through the CBLAST Departmental Research Initiative (grants N00014-01-1-0029, N00014-05-10090, N00014-01-1-0081, N00014-04-1-0110, N00014-05-1-0036, N00014-01-1-0080) and the Secretary of the Navy/Chief of Naval Operations Chair (grant N00014-99-1-0090)

    Transfer across the air-sea interface

    Full text link
    The efficiency of transfer of gases and particles across the air-sea interface is controlled by several physical, biological and chemical processes in the atmosphere and water which are described here (including waves, large- and small-scale turbulence, bubbles, sea spray, rain and surface films). For a deeper understanding of relevant transport mechanisms, several models have been developed, ranging from conceptual models to numerical models. Most frequently the transfer is described by various functional dependencies of the wind speed, but more detailed descriptions need additional information. The study of gas transfer mechanisms uses a variety of experimental methods ranging from laboratory studies to carbon budgets, mass balance methods, micrometeorological techniques and thermographic techniques. Different methods resolve the transfer at different scales of time and space; this is important to take into account when comparing different results. Air-sea transfer is relevant in a wide range of applications, for example, local and regional fluxes, global models, remote sensing and computations of global inventories. The sensitivity of global models to the description of transfer velocity is limited; it is however likely that the formulations are more important when the resolution increases and other processes in models are improved. For global flux estimates using inventories or remote sensing products the accuracy of the transfer formulation as well as the accuracy of the wind field is crucial

    Stereo imaging and X-band radar wave data fusion: An assessment

    Get PDF
    The use of spatial and spatio-temporal data is rapidly changing the paradigm of wind wave observations, which have been traditionally restricted to time series from single-point measurements (e.g. from buoys, wave gauges). Active and passive 2D remote sensors mounted on platforms, ships, airplanes and satellites are now becoming standards in the oceanographic community and industry. Given the covered area ranging from centimeters to kilometers, such sensors are now a valuable tool for ocean and coastal observations. In this paper, we intercompare spatio-temporal wind wave data acquired with two state-of-the-art techniques, namely the stereo wave imaging and the X-band marine radar. The comparison was performed by operating the two instruments on an oceanographic research platform during a crossing-sea condition. We analyzed the statistical properties of the wave field, and its directional and omni-directional energy distributions. From our analysis, we suggest that stereo data can be exploited to find the best radar Modulation Transfer Function and scale factor needed to estimate wave parameters. Moreover, the fusion of the two systems will allow to broaden the scales covered by any one measurement, and to retrieve reliable directional wave spectra from short (∼1 m) to mid-wavelengths (∼100 m)

    Variations in Ocean Surface Temperature due to Near-Surface Flow: Straining the Cool Skin Layer

    Get PDF
    The aqueous thermal boundary layer near to the ocean surface, or skin layer, has thickness O(1 mm) and plays an important role in controlling the exchange of heat between the atmosphere and the ocean. Theoretical arguments and experimental measurements are used to investigate the dynamics of the skin layer under the influence of an upwelling flow, which is imposed in addition to free convection below a cooled water surface. Previous theories of straining flow in the skin layer are considered and a simple extension of a surface straining model is posed to describe the combination of turbulence and an upwelling flow. An additional theory is also proposed, conceptually based on the buoyancy-driven instability of a laminar straining flow cooled from above. In all three theories considered two distinct regimes are observed for different values of the Péclet number, which characterizes the ratio of advection to diffusion within the skin layer. For large Péclet numbers, the upwelling flow dominates and increases the free surface temperature, or skin temperature, to follow the scaling expected for a laminar straining flow. For small Péclet numbers, it is shown that any flow that is steady or varies over long time scales produces only a small change in skin temperature by direct straining of the skin layer. Experimental measurements demonstrate that a strong upwelling flow increases the skin temperature and suggest that the mean change in skin temperature with Péclet number is consistent with the theoretical trends for large Péclet number flow. However, all of the models considered consistently underpredict the measured skin temperature, both with and without an upwelling flow, possibly a result of surfactant effects not included in the models

    Descriptive indicators for surface conditions

    Get PDF

    The atmospheric effects of stratospheric aircraft

    Get PDF
    This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations

    Guide to Best Practices to Study the Ocean's Surface

    Get PDF
    corecore