172 research outputs found

    Internet of Things (IoT) Applications With Diverse Direct Communication Methods

    Get PDF
    Title from PDF of title page viewed August 28, 2017Dissertation advisor: Baek-Young ChoiVitaIncludes bibliographical references (pages 124-138)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016Internet of Things (IoT) is a network of physical objects or things that are embedded with electronics, software, sensors, and network connectivity - which enable the object to collect and exchange data. Rapid proliferation of IoT is driving the intelligence in things used daily in homes, workplaces and industry. The IoT devices typically communicate via radio frequency (RF), such as WiFi and Bluetooth. In this dissertation we deeply analyze the various characteristics of different wireless communication methods in terms of range, energy-efficiency, and radiation pattern. We find that a well-established communication method might not be the most efficient, and other alternate communication methods with the desired properties for a particular application could exist. We exploit radically alternative, innovative, and complimentary wireless communication methods, including radio frequency, infrared (IR), and visible lights, through the IoT applications we have designed and built with those. We have developed various IoT applications which provide security and authentication, enable vehicular communications with smartphones or other smart devices, provide energy-efficient and accurate positioning to smart devices, and enable energy-efficient communications in Industrial Internet of Things (IIoT).Introduction -- Optical wireless authentication for SMART devices using an onboard ambient light sensor -- Smartphome based CAR2X-communication with wifi beacon stuffing for vulnerable road user safety -- Energy-efficient cooperative opportunistic positioning heterogeneous Smart devices -- Reducing and balancing energy consumption in Indistrial Internet of Things (IIoT) -- Optical wireless unlocking for Smart door locks using Smartphones -- Summary and future direction

    Residential access control system using QR code and the IoT

    Get PDF
    This paper presents a residential access control system (RACs) using QR codes and the internet of things (IoT) to improve security and help house owners. The contribution of this paper is that it proposes two mechanisms in the authentication phase and the verification phase, respectively, to enhance residential access control. The main idea is using cryptography between smartphones and access control devices. The cryptography compares secret codes on the key server via the internet. The RACs can notify a user of the residential access status through the LINE application and show the statuses of devices through the network platform for the internet of everything (NETPIE) in real-time. We compare this system’s performance with that of the current access control methods in terms of security and access speed. The results show that this system has more security and has an access speed of 5.63 seconds. Moreover, this system is safer and more flexible than the comparative methods and suitable for contactless authentication

    Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments

    Get PDF
    Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications

    Developing Future Smart Parking Solutions for Hangzhou\u27s IoT Town

    Get PDF
    With help from the Smart Cities Research Center of Zhejiang Province, this project aimed to assess and improve current smart parking solutions in Hangzhou, China. The team consulted industry experts and research students to gauge the direction of smart technology applicable to future parking solutions. The team analyzed results from interviews, customer surveys, and observations to infer needs for improved user experience. Research performed on future technologies allowed the team to offer a system framework recommendation with modern smart parking features for a characteristic town in Hangzhou. The project team discovered that a future smart parking system could integrate 5G, High-Frequency RFID, and non-contact payment methods to address the shortcomings of current smart parking systems

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Context-Aware Smart Door Lock with Activity Recognition Using Hierarchical Hidden Markov Model

    Get PDF
    Context-Aware Security demands a security system such as a Smart Door Lock to be flexible in determining security levels. The context can be in various forms; a person’s activity in the house is one of them and is proposed in this research. Several learning methods, such as Naïve Bayes, have been used previously to provide context-aware security systems, using related attributes. However conventional learning methods cannot be implemented directly to a Context-Aware system if the attribute of the learning process is low level. In the proposed system, attributes are in forms of movement data obtained from a PIR Sensor Network. Movement data is considered low level because it is not related directly to the desired context, which is activity. To solve the problem, the research proposes a hierarchical learning method, namely Hierarchical Hidden Markov Model (HHMM). HHMM will first transform the movement data into activity data through the first hierarchy, hence obtaining high level attributes through Activity Recognition. The second hierarchy will determine the security level through the activity pattern. To prove the success rate of the proposed method a comparison is made between HHMM, Naïve Bayes, and HMM. Through experiments created in a limited area with real sensed activity, the results show that HHMM provides a higher F1-Measure than Naïve Bayes and HMM in determining the desired context in the proposed system. Besides that, the accuracies obtained respectively are 88% compared to 75% and 82%

    Smart Footwear with Toe Print Sensors

    Get PDF
    Identifying and authenticating a user in an environment such as their home or office typically requires the user to use a key, punch a code in a keypad, carry a smartphone, carry a key fob, etc. Each one of these options has drawbacks from a user experience standpoint and in some cases can be abused or spoofed

    Architecture and Applications of IoT Devices in Socially Relevant Fields

    Full text link
    Number of IoT enabled devices are being tried and introduced every year and there is a healthy competition among researched and businesses to capitalize the space created by IoT, as these devices have a great market potential. Depending on the type of task involved and sensitive nature of data that the device handles, various IoT architectures, communication protocols and components are chosen and their performance is evaluated. This paper reviews such IoT enabled devices based on their architecture, communication protocols and functions in few key socially relevant fields like health care, farming, firefighting, women/individual safety/call for help/harm alert, home surveillance and mapping as these fields involve majority of the general public. It can be seen, to one's amazement, that already significant number of devices are being reported on these fields and their performance is promising. This paper also outlines the challenges involved in each of these fields that require solutions to make these devices reliableComment: 1

    Segurança em ambientes de proximidade

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaA crescente adopção de dispositivos móveis, com cada vez mais capacidades de computação e comunicação, leva inevitavelmente à questão de como podem ser explorados. O objectivo desta dissertação passa por explorar algumas dessas capacidades de forma a melhorar e evoluir a interac ção segura entre o utilizador e os serviços que utilizada no seu dia-a-dia. É particularmente interessante o uso destes dispositivos não apenas como sistemas de armazenamento, mas como peças activas na interacção entre o utilizador e o mundo que o rodeia, um cenário potenciado pelas crescentes capacidades de comunicação em proximidade destes dispositivos. Esta dissertação debruça-se sobre o estudo e possível integração da proximidade física entre um utilizador e os sistemas que usa diariamente como um requisito extra na autenticação e comunicação entre eles, usando o seu dispositivo móvel para interagir com os mesmos. De forma a demonstrar uma possível integração destes elementos num sistema, este trabalho apresenta uma implementação que explora o uso de tecnologias de curto alcance como meio de comunicação e como requisito de autenticação, recorrendo a mecanismos de segurança para estabelecer comunicações privadas sobre redes públicas e garantir e veri car a autencidade da informa ção trocada e armazenada.The increasing adoption of mobile devices with more computing and communication capabilities inevitably raises the question of how to explore them. The goal of this dissertation is to explore some of those capabilities to improve and evolve secure interactions between the user and the services that he uses in his daily life. It is particularly interesting to use these devices not only as storage systems, but also as active elements in the interaction between the user and the world around him: this objective is boosted by the increasing proximity-based communication capabilities of those devices. This dissertation focus on the study and possible integration of the physical proximity between a user and the systems he uses every day as an extra requirement for authentication, using his mobile device to interact with them. To demonstrate a possible integration of these elements into a system, this work presents an implementation that explores the use of short-range wireless technologies as a communication mean and as a requirement for authentication, using security mechanisms to establish private communications through public networks and to ensure and verify the authenticity of the information exchanged and stored
    corecore