8,708 research outputs found

    Self-normalizing phase measurement in multimode terahertz spectroscopy based on photomixing of three lasers

    Full text link
    Photomixing of two near-infrared lasers is well established for continuous-wave terahertz spectroscopy. Photomixing of three lasers allows us to measure at three terahertz frequencies simultaneously. Similar to Fourier spectroscopy, the spectral information is contained in an nterferogram, which is equivalent to the waveform in time-domain spectroscopy. We use one fixed terahertz frequency \nu_ref to monitor temporal drifts of the setup, i.e., of the optical path-length difference. The other two frequencies are scanned for broadband high-resolution spectroscopy. The frequency dependence of the phase is obtained with high accuracy by normalizing it to the data obtained at \nu_ref, which eliminates drifts of the optical path-length difference. We achieve an accuracy of about 1-2 microns or 10^{-8} of the optical path length. This method is particularly suitable for applications in nonideal environmental conditions outside of an air-conditioned laboratory.Comment: 5 pages, 5 figure

    Synchrotron Radiation From Radiatively Inefficient Accretion Flow Simulations: Applications to Sgr A*

    Full text link
    We calculate synchrotron radiation in three-dimensional pseudo-Newtonian magnetohydrodynamic simulations of radiatively inefficient accretion flows. We show that the emission is highly variable at optically thin frequencies, with order of magnitude variability on time-scales as short as the orbital period near the last stable orbit; this emission is linearly polarized at the 20-50 % level due to the coherent toroidal magnetic field in the flow. At optically thick frequencies, both the variability amplitude and polarization fraction decrease significantly with decreasing photon frequency. We argue that these results are broadly consistent with the observed properties of Sgr A* at the Galactic Center, including the rapid infrared flaring.Comment: Accepted for publication in Ap

    Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography

    Get PDF
    Early detection of dental caries is known to be the key to the effectiveness of therapeutic and preventive approaches in dentistry. However, existing clinical detection techniques, such as radiographs, are not sufficiently sensitive to detect and monitor the progression of caries at early stages. As such, in recent years, several optics-based imaging modalities have been proposed for the early detection of caries. The majority of these techniques rely on the enhancement of light scattering in early carious lesions, while a few of them are based on the enhancement of light absorption at early caries sites. In this paper, we report on a systemic comparative study on the detection performances of optical coherence tomography (OCT) and thermophotonic lock-in imaging (TPLI) as representative early caries detection modalities based on light scattering and absorption, respectively. Through controlled demineralization studies on extracted human teeth and µCT validation experiments, several detection performance parameters of the two modalities such as detection threshold, sensitivity and specificity have been qualitatively analyzed and discussed. Our experiment results suggests that both modalities have sufficient sensitivity for the detection of well-developed early caries on occlusal and smooth surfaces; however, TPLI provides better sensitivity and detection threshold for detecting very early stages of caries formation, which is deemed to be critical for the effectiveness of therapeutic and preventive approaches in dentistry. Moreover, due to the more specific nature of the light absorption contrast mechanism over light scattering, TPLI exhibits better detection specificity, which results in less false positive readings and thus allows for the proper differentiation of early caries regions from the surrounding intact areas. The major shortcoming of TPLI is its inherent depth-integrated nature, prohibiting the production of depth-resolved/B-mode like images. The outcomes of this research justify the need for a light-absorption based imaging modality with the ability to produce tomographic and depth-resolved images, combining the key advantages of OCT and TPLI.York University Librarie

    Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry

    Full text link
    Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14 figure

    Quantum cascade laser light propagation through hollow silica waveguides

    Get PDF
    In this paper, the transmission characteristics of hollow silica waveguides with bore diameters of 300 and 1000 μm are investigated using a 7.8-μm quantum cascade laser system. We show that the bore diameter, coiling and launch conditions have an impact on the number of supported modes in the waveguide. Experimental verification of theoretical predictions is achieved using a thermal imaging camera to monitor output intensity distributions from waveguides under a range of conditions. The thermal imaging camera allowed for more detailed images than could be obtained with a conventionally used beam profiler. The results show that quasi-single-mode transmission is achievable under certain conditions although guided single-mode transmission in coiled waveguides requires a smaller bore diameter-to-wavelength ratio than is currently available. Assessment of mode population is made by investigating the spatial frequency content of images recorded at the waveguide output using Fourier transform techniques

    Gas and Dust Emission at the Outer Edge of Protoplanetary Disks

    Full text link
    We investigate the apparent discrepancy between gas and dust outer radii derived from millimeter observations of protoplanetary disks. Using 230 and 345 GHz continuum and CO J=3-2 data from the Submillimeter Array for four nearby disk systems (HD 163296, TW Hydrae, GM Aurigae, and MWC 480), we examine models of circumstellar disk structure and the effects of their treatment of the outer disk edge. We show that for these disks, models described by power laws in surface density and temperature that are truncated at an outer radius are incapable of reproducing both the gas and dust emission simultaneously: the outer radius derived from the dust continuum emission is always significantly smaller than the extent of the molecular gas disk traced by CO emission. However, a simple model motivated by similarity solutions of the time evolution of accretion disks that includes a tapered exponential edge in the surface density distribution (and the same number of free parameters) does much better at reproducing both the gas and dust emission. While this analysis does not rule out the disparate radii implied by the truncated power-law models, a realistic alternative disk model, grounded in the physics of accretion, provides a consistent picture for the extent of both the gas and dust.Comment: 9 pages, 2 figures, accepted for publication in Ap

    On the nature of the transition disk around LkCa 15

    Get PDF
    We present CARMA 1.3 mm continuum observations of the T Tauri star LkCa 15,which resolve the circumstellar dust continuum emission on angular scales between 0.2-3 arcsec, corresponding to 28-420 AU at the distance of the star. The observations resolve the inner gap in the dust emission and reveal an asymmetric dust distribution in the outer disk. (Abridge) We calculate that 90% of the dust emission arises from an azimuthally symmetric ring that contains about 5x10^{-4} M_sun of dust. A low surface-brightness tail that extends to the northwest out to a radius of about 300 AU contains the remaining 10% of the observed continuum emission. The ring is modeled with a rather flat surface density profile between 40 and 120 AU, while the inner cavity is consistent with either a sharp drop of the 1.3 mm dust optical depth at about 42 AU or a smooth inward decrease between 3 and 85 AU. (Abridge). Within 40 AU, the observations constrain the amount of dust between 10^{-6} and 7 Earth masses, where the minimum and maximum limits are set by the near-IR SED modeling and by the mm-wave observations of the dust emission respectively. In addition, we confirm the discrepancy in the outer disk radius inferred from the dust and gas, which corresponds to 150 AU and 900 AU respectively. We cannot reconcile this difference by adopting an exponentially tapered surface density profile as suggested for other systems, but we instead suggest that the gas surface density in the outer disk decreases less steeply than that predicted by model fits to the dust continuum emission. The lack of continuum emission at radii lager than 120 AU suggests a drop of at least a factor of 5 in the dust-to-gas ratio, or in the dust opacity. We show that a sharp dust opacity drop of this magnitude is consistent with a radial variation of the grain size distribution as predicted by existing grain growth models.Comment: Accepted for publication on ApJ, 13 pages, 11 figure
    corecore