631 research outputs found

    Multiple Moving Object Recognitions in video based on Log Gabor-PCA Approach

    Full text link
    Object recognition in the video sequence or images is one of the sub-field of computer vision. Moving object recognition from a video sequence is an appealing topic with applications in various areas such as airport safety, intrusion surveillance, video monitoring, intelligent highway, etc. Moving object recognition is the most challenging task in intelligent video surveillance system. In this regard, many techniques have been proposed based on different methods. Despite of its importance, moving object recognition in complex environments is still far from being completely solved for low resolution videos, foggy videos, and also dim video sequences. All in all, these make it necessary to develop exceedingly robust techniques. This paper introduces multiple moving object recognition in the video sequence based on LoG Gabor-PCA approach and Angle based distance Similarity measures techniques used to recognize the object as a human, vehicle etc. Number of experiments are conducted for indoor and outdoor video sequences of standard datasets and also our own collection of video sequences comprising of partial night vision video sequences. Experimental results show that our proposed approach achieves an excellent recognition rate. Results obtained are satisfactory and competent.Comment: 8,26,conferenc

    Multi-view Face Pose Classification by Boosting with Weak Hypothesis Fusion Using Visual and Infrared Images

    Get PDF
    This paper proposes a novel method for multi-view face pose classification through sequential learning and sensor fusion. The basic idea is to use face images observed in visual and thermal infrared (IR) bands, with the same sampling weight in a multi-class boosting structure. The main contribution of this paper is a multi-class AdaBoost classification framework where information obtained from visual and infrared bands interactively complement each other. This is achieved by learning weak hypothesis for visual and IR band independently and then fusing the optimized hypothesis sub-ensembles. In addition, an effective feature descriptor is introduced to thermal IR images. Experiments are conducted on a visual and thermal IR image dataset containing 4844 face images in 5 different poses. Results have shown significant increase in classification rate as compared with an existing multi-class AdaBoost algorithm SAMME trained on visual or infrared images alone, as well as a simple baseline classification-fusion algorithm

    Towards better performance: phase congruency based face recognition

    Get PDF
    Phase congruency is an edge detector and measurement of the significant feature in the image. It is a robust method against contrast and illumination variation. In this paper, two novel techniques are introduced for developing alow-cost human identification system based on face recognition. Firstly, the valuable phase congruency features, the gradient-edges and their associate dangles are utilized separately for classifying 130 subjects taken from three face databases with the motivation of eliminating the feature extraction phase. By doing this, the complexity can be significantly reduced. Secondly, the training process is modified when a new technique, called averaging-vectors is developed to accelerate the training process and minimizes the matching time to the lowest value. However, for more comparison and accurate evaluation,three competitive classifiers:  Euclidean distance (ED),cosine distance (CD), and Manhattan distance (MD) are considered in this work. The system performance is very competitive and acceptable, where the experimental  results show promising recognition rates with a reasonable matching time

    Robust thermal face recognition using region classifiers

    Get PDF
    This paper presents a robust approach for recognition of thermal face images based on decision level fusion of 34 different region classifiers. The region classifiers concentrate on local variations. They use singular value decomposition (SVD) for feature extraction. Fusion of decisions of the region classifier is done by using majority voting technique. The algorithm is tolerant against false exclusion of thermal information produced by the presence of inconsistent distribution of temperature statistics which generally make the identification process difficult. The algorithm is extensively evaluated on UGC-JU thermal face database, and Terravic facial infrared database and the recognition performance are found to be 95.83% and 100%, respectively. A comparative study has also been made with the existing works in the literature

    Eigen-patch iris super-resolution for iris recognition improvement

    Get PDF
    Low image resolution will be a predominant factor in iris recognition systems as they evolve towards more relaxed acquisition conditions. Here, we propose a super-resolution technique to enhance iris images based on Principal Component Analysis (PCA) Eigen-transformation of local image patches. Each patch is reconstructed separately, allowing better quality of enhanced images by preserving local information and reducing artifacts. We validate the system used a database of 1,872 near-infrared iris images. Results show the superiority of the presented approach over bilinear or bicubic interpolation, with the eigen-patch method being more resilient to image resolution reduction. We also perform recognition experiments with an iris matcher based 1D Log-Gabor, demonstrating that verification rates degrades more rapidly with bilinear or bicubic interpolation.peer-reviewe

    Iterative Multiscale Fusion and Night Vision Colorization of Multispectral Images

    Get PDF
    corecore