853 research outputs found

    An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform

    Get PDF
    With the development of wireless communication networks, smart phones have become a necessity for people’s daily lives, and they meet not only the needs of basic functions for users such as sending a message or making a phone call, but also the users’ demands for entertainment, surfing the Internet and socializing. Navigation functions have been commonly utilized, however the navigation function is often based on GPS (Global Positioning System) in outdoor environments, whereas a number of applications need to navigate indoors. This paper presents a system to achieve high accurate indoor navigation based on Android platform. To do this, we design a sensor fusion scheme for our system. We divide the system into three main modules: distance measurement module, orientation detection module and position update module. We use an efficient way to estimate the stride length and use step sensor to count steps in distance measurement module. For orientation detection module, in order to get the optimal result of orientation, we then introduce Kalman filter to de-noise the data collected from different sensors. In the last module, we combine the data from the previous modules and calculate the current location. Results of experiments show that our system works well and has high accuracy in indoor situations

    Context Detection, Categorization and Connectivity for Advanced Adaptive Integrated Navigation

    Get PDF
    Context is the environment that a navigation system operates in and the behaviour of its host vehicle or user. The type and quality of signals and environmental features available for positioning varies with the environment. For example, GNSS provides high-quality positioning in open environments, low-quality positioning in dense urban environments and no solution at all deep indoors. The behaviour of the host vehicle (or pedestrian) is also important. For example, pedestrian, car and train navigation all require different map-matching techniques, different motion constraints to limit inertial navigation error growth, and different dynamic models in a navigation filter [1]. A navigation system design should therefore be matched to its context. However, the context can change, particularly for devices, such as smartphones, which move between indoor and outdoor environments and can be stationary, on a pedestrian, or in a vehicle. For best performance, a navigation system should therefore be able to detect its operating context and adapt accordingly; this is context-adaptive positioning [1]. Previous work on context-adaptive navigation and positioning has focused on individual subsystems. For example, there has been substantial research into determining the motion type and sensor location for pedestrian dead reckoning using step detection [2-4]. Researchers have also begun to investigate context-adaptive (or cognitive) GNSS [5-7]. However, this paper considers context adaptation across an integrated navigation system as a whole. The paper addresses three aspects of context-adaptive integrated navigation: context detection, context categorization and context connectivity. It presents experimental results showing how GNSS C/N0 measurements, frequency-domain MEMS inertial sensor measurements and Wi-Fi signal availability could be used to detect both the environmental and behavioural contexts. It then looks at how context information could be shared across the different components of an integrated navigation system. Finally, the concept of context connectivity is introduced to improve the reliability of context detection. GNSS C/N0 measurement distributions, obtained using a smartphone, and Wi-Fi reception data collected over a range of indoor, urban and open environments will be compared to identify suitable features from which the environmental context may be derived. In an open environment, strong GNSS signals will be received from all directions. In an urban environment, fewer strong signals will be received and only from certain directions. Inside a building, nearly all GNSS signals will be much weaker than outside. Wi-Fi signals essentially vary with the environment in the opposite way to GNSS. Indoors, more access points (APs) can be received at higher signal strengths and there is greater variation in RSS. In urban environments, large numbers of APs can still be received, but at lower signal strengths [6]. Finally, in open environments, few APs, if any, will be received. Behavioural context is studied using an IMU. Although an Xsens MEMS IMU is used in this study, smartphone inertial sensors are also suitable. Pedestrian, car and train data has been collected under a range of different motion types and will be compared to identify context-dependent features. Early indications are that, as well as detecting motion, it is also possible to distinguish nominally-stationary IMUs that are placed in a car, on a person or on a table from the frequency spectra of the sensor measurements. The exchange of context information between subsystems in an integrated navigation system requires agreement on the definitions of those contexts. As different subsystems are often supplied by different organisations, it is desirable to standardize the context definitions across the whole navigation and positioning community. This paper therefore proposes a framework upon which a “context dictionary” could be constructed. Environmental and behavioural contexts are categorized separately and a hierarchy of attributes is proposed to enable some subsystems to work with highly specific context categories and others to work with broader categories. Finally, the concept of context connectivity is introduced. This is analogous to the road link connectivity used in map matching [8]. As context detection involves the matching of measurement data to stored context profiles, there will always be occurrences of false or ambiguous context identification. However, these may be minimized by using the fact that it is only practical to transition directly between certain pairs of contexts. For example, it is not normally possible to move directly from an airborne to an indoor environment as an aircraft must land first. Thus, the air and land contexts are connected, as are the land and indoor contexts, but the air and indoor contexts are not. Thus, by only permitting contexts that are connected to the previous context, false and ambiguous context detection is reduced. Robustness may be further enhanced by considering location-dependent connectivity. For example, people normally board and leave trains at stations and fixed-wing aircraft typically require an airstrip to take off and land. / References [1] Groves, P. D., Principles of GNSS, inertial, and multi-sensor integrated navigation systems, Second Edition, Artech House, 2013. [2] Park, C. G., et al., “Adaptive Step Length Estimation with Awareness of Sensor Equipped Location for PNS,” Proc. ION GNSS 2007. [3] Frank, K., et al., “Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors,” Proc. ION GNSS 2010. [4] Pei, L., et al., “Using Motion-Awareness for the 3D Indoor Personal Navigation on a Smartphone,” Proc. ION GNSS 2011. [5] Lin, T., C. O’Driscoll, and G. Lachapelle, “Development of a Context-Aware Vector-Based High-Sensitivity GNSS Software Receiver,” Proc. ION ITM 2011. [6] Shafiee, M., K., O’Keefe, and G. Lachapelle, “Context-aware Adaptive Extended Kalman Filtering Using Wi-Fi Signals for GPS Navigation,” Proc. ION GNSS 2011. [7] Shivaramaiah, N. C., and A. G. Dempster, “Cognitive GNSS Receiver Design: Concept and Challenges,” Proc. ION GNSS 2011. [8] Quddus, M. A., High Integrity Map Matching Algorithms for Advanced Transport Telematics Applications, PhD Thesis, Imperial College London, 2006

    SILS: a Smart Indoors Localization Scheme based on on-the-go cooperative Smartphones networks using onboard Bluetooth, WiFi and GNSS

    Get PDF
    Seamless outdoors-indoors localization based on Smartphones sensors is essential to realize the full potential of Location Based Services. This paper proposes a Smart Indoors Localization Scheme (SILS) whereby participating Smartphones (SPs) in the same outdoors and indoors vicinity, form a Bluetooth network to locate the indoors SPs. To achieve this, SILS will perform 3 functions: (1) synchronize & locate all reachable WiFi Access Points (WAPs) with live GNSS time available on the outdoors SPs; 2) exchange a database of all SPs location and time-offsets; 3) calculate approximate location of indoor-SPs based on hybridization of GNSS, Bluetooth and WiFi measurements. These measurements includes a) Bluetooth to Bluetooth relative pseudo ranges of all participating SPs based on hop-synchronization and Master-Slave role switching to minimize the pseudo-ranges error, b) GNSS measured location of outdoors-SPs with good geometric reference points, and c) WAPs-SPs Trilateration estimates for deep indoors localization. Results, obtained from OPNET simulation and live trials of SILS built for various SPs network size and indoors/outdoors combinations scenarios, show that we can locate under 1 meter in near-indoors while accuracy of around 2-meters can be achieved when locating SPs at deep indoors situations. Better accuracy can be achieved when large numbers of SPs (up to 7) are available in the network/vicinity at any one time and when at least 4 of them have a good sky view outdoors

    Floor plan-free particle filter for indoor positioning of industrial vehicles

    Get PDF
    Industry 4.0 is triggering the rapid development of solutions for indoor localization of industrial ve- hicles in the factories of the future. Either to support indoor navigation or to improve the operations of the factory, the localization of industrial vehicles imposes demanding requirements such as high accuracy, coverage of the entire operating area, low convergence time and high reliability. Industrial vehicles can be located using Wi-Fi fingerprinting, although with large positioning errors. In addition, these vehicles may be tracked with motion sensors, however an initial position is necessary and these sensors often suffer from cumulative errors (e.g. drift in the heading). To overcome these problems, we propose an indoor positioning system (IPS) based on a particle filter that combines Wi-Fi fingerprinting with data from motion sensors (displacement and heading). Wi-Fi position estimates are obtained using a novel approach, which explores signal strength measurements from multiple Wi-Fi interfaces. This IPS is capable of locating a vehicle prototype without prior knowledge of the starting position and heading, without depending on the building’s floor plan. An average positioning error of 0.74 m was achieved in performed tests in a factory-like building.FCT – Fundação para a CiĂȘncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, the PhD fellowship PD/BD/137401/2018 and the Technological Development in the scope of the projects in co-promotion no 002814/2015 (iFACTORY 2015-2018

    COVID-19 & privacy: Enhancing of indoor localization architectures towards effective social distancing

    Get PDF
    Abstract The way people access services in indoor environments has dramatically changed in the last year. The countermeasures to the COVID-19 pandemic imposed a disruptive requirement, namely preserving social distance among people in indoor environments. We explore in this work the possibility of adopting the indoor localization technologies to measure the distance among users in indoor environments. We discuss how information about people's contacts collected can be exploited during three stages: before, during, and after people access a service. We present a reference architecture for an Indoor Localization System (ILS), and we illustrate three representative use-cases. We derive some architectural requirements, and we discuss some issues that concretely cope with the real installation of an ILS in real-world settings. In particular, we explore the privacy and trust reputation of an ILS, the discovery phase, and the deployment of the ILS in real-world settings. We finally present an evaluation framework for assessing the performance of the architecture proposed

    Information provision improvement with a geofencing event-bases system

    Get PDF
    Nowadays there is a big percentage of the population, specially young users, which are smartphone users and there is a lot of information to be provided within the applications, information provision should be done carefully and should be accurate, otherwise an overload of information will be produced, and the user will discard the app which is providing the information. Mobile devices are becoming smarter and provide many ways to filter information. However, there are alternatives to improve information provision from the side of the application. Some examples are, taking into account the local time, considering the battery level before doing an action and checking the user location to send personalized information attached to that location. SmartCampus and SmartCities are becoming a reality and they have more and more data integrated every day. With all this amount of data it is crucial to decide when and where is the user going to receive a notification with new information. Geofencing is a technique which allows applications to deliver information in a more useful way, in the right time and in the right place. It consists of geofences, physical regions delimited by boundaries, and devices that are eligible to receive the information assigned to the geofence. When devices cross one of these geofences an alert is pushed to the mobile device with the information

    Radio Frequency-Based Indoor Localization in Ad-Hoc Networks

    Get PDF
    The increasing importance of location‐aware computing and context‐dependent information has led to a growing interest in low‐cost indoor positioning with submeter accuracy. Localization algorithms can be classified into range‐based and range‐free techniques. Additionally, localization algorithms are heavily influenced by the technology and network architecture utilized. Availability, cost, reliability and accuracy of localization are the most important parameters when selecting a localization method. In this chapter, we introduce basic localization techniques, discuss how they are implemented with radio frequency devices and then characterize the localization techniques based on the network architecture, utilized technologies and application of localization. We then investigate and address localization in indoor environments where the absence of global positioning system (GPS) and the presence of unique radio propagation properties make this problem one of the most challenging topics of localization in wireless networks. In particular, we study and review the previous work for indoor localization based on radio frequency (RF) signaling (like Bluetooth‐based localization) to illustrate localization challenges and how some of them can be overcome

    On power line positioning systems

    Get PDF
    Power line infrastructure is available almost everywhere. Positioning systems aim to estimate where a device or target is. Consequently, there may be an opportunity to use power lines for positioning purposes. This survey article reports the different efforts, working principles, and possibilities for implementing positioning systems relying on power line infrastructure for power line positioning systems (PLPS). Since Power Line Communication (PLC) systems of different characteristics have been deployed to provide communication services using the existing mains, we also address how PLC systems may be employed to build positioning systems. Although some efforts exist, PLPS are still prospective and thus open to research and development, and we try to indicate the possible directions and potential applications for PLPS.European Commissio
    • 

    corecore