884 research outputs found

    Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Get PDF
    In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT) magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF) algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and the Visual Information Fidelity (VIF). The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC) curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided

    Joceli Mayer

    Get PDF

    A study on the false positive rate of Stegdetect

    Get PDF
    In this paper we analyse Stegdetect, one of the well-known image steganalysis tools, to study its false positive rate. In doing so, we process more than 40,000 images randomly downloaded from the Internet using Google images, together with 25,000 images from the ASIRRA (Animal Species Image Recognition for Restricting Access) public corpus. The aim of this study is to help digital forensic analysts, aiming to study a large number of image files during an investigation, to better understand the capabilities and the limitations of steganalysis tools like Stegdetect. The results obtained show that the rate of false positives generated by Stegdetect depends highly on the chosen sensitivity value, and it is generally quite high. This should support the forensic expert to have better interpretation in their results, and taking the false positive rates into consideration. Additionally, we have provided a detailed statistical analysis for the obtained results to study the difference in detection between selected groups, close groups and different groups of images. This method can be applied to any steganalysis tool, which gives the analyst a better understanding of the detection results, especially when he has no prior information about the false positive rate of the tool

    Information Forensics and Security: A quarter-century-long journey

    Get PDF
    Information forensics and security (IFS) is an active R&D area whose goal is to ensure that people use devices, data, and intellectual properties for authorized purposes and to facilitate the gathering of solid evidence to hold perpetrators accountable. For over a quarter century, since the 1990s, the IFS research area has grown tremendously to address the societal needs of the digital information era. The IEEE Signal Processing Society (SPS) has emerged as an important hub and leader in this area, and this article celebrates some landmark technical contributions. In particular, we highlight the major technological advances by the research community in some selected focus areas in the field during the past 25 years and present future trends

    Digital watermark technology in security applications

    Get PDF
    With the rising emphasis on security and the number of fraud related crimes around the world, authorities are looking for new technologies to tighten security of identity. Among many modern electronic technologies, digital watermarking has unique advantages to enhance the document authenticity. At the current status of the development, digital watermarking technologies are not as matured as other competing technologies to support identity authentication systems. This work presents improvements in performance of two classes of digital watermarking techniques and investigates the issue of watermark synchronisation. Optimal performance can be obtained if the spreading sequences are designed to be orthogonal to the cover vector. In this thesis, two classes of orthogonalisation methods that generate binary sequences quasi-orthogonal to the cover vector are presented. One method, namely "Sorting and Cancelling" generates sequences that have a high level of orthogonality to the cover vector. The Hadamard Matrix based orthogonalisation method, namely "Hadamard Matrix Search" is able to realise overlapped embedding, thus the watermarking capacity and image fidelity can be improved compared to using short watermark sequences. The results are compared with traditional pseudo-randomly generated binary sequences. The advantages of both classes of orthogonalisation inethods are significant. Another watermarking method that is introduced in the thesis is based on writing-on-dirty-paper theory. The method is presented with biorthogonal codes that have the best robustness. The advantage and trade-offs of using biorthogonal codes with this watermark coding methods are analysed comprehensively. The comparisons between orthogonal and non-orthogonal codes that are used in this watermarking method are also made. It is found that fidelity and robustness are contradictory and it is not possible to optimise them simultaneously. Comparisons are also made between all proposed methods. The comparisons are focused on three major performance criteria, fidelity, capacity and robustness. aom two different viewpoints, conclusions are not the same. For fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal codes has very strong advantage to preserve image fidelity and the advantage of capacity performance is also significant. However, from the power ratio point of view, the orthogonalisation methods demonstrate significant advantage on capacity and robustness. The conclusions are contradictory but together, they summarise the performance generated by different design considerations. The synchronisation of watermark is firstly provided by high contrast frames around the watermarked image. The edge detection filters are used to detect the high contrast borders of the captured image. By scanning the pixels from the border to the centre, the locations of detected edges are stored. The optimal linear regression algorithm is used to estimate the watermarked image frames. Estimation of the regression function provides rotation angle as the slope of the rotated frames. The scaling is corrected by re-sampling the upright image to the original size. A theoretically studied method that is able to synchronise captured image to sub-pixel level accuracy is also presented. By using invariant transforms and the "symmetric phase only matched filter" the captured image can be corrected accurately to original geometric size. The method uses repeating watermarks to form an array in the spatial domain of the watermarked image and the the array that the locations of its elements can reveal information of rotation, translation and scaling with two filtering processes

    Exploiting loop transformations for the protection of software

    Get PDF
    Il software conserva la maggior parte del know-how che occorre per svilupparlo. Poich\ue9 oggigiorno il software pu\uf2 essere facilmente duplicato e ridistribuito ovunque, il rischio che la propriet\ue0 intellettuale venga violata su scala globale \ue8 elevato. Una delle pi\uf9 interessanti soluzioni a questo problema \ue8 dotare il software di un watermark. Ai watermark si richiede non solo di certificare in modo univoco il proprietario del software, ma anche di essere resistenti e pervasivi. In questa tesi riformuliamo i concetti di robustezza e pervasivit\ue0 a partire dalla semantica delle tracce. Evidenziamo i cicli quali costrutti di programmazione pervasivi e introduciamo le trasformazioni di ciclo come mattone di costruzione per schemi di watermarking pervasivo. Passiamo in rassegna alcune fra tali trasformazioni, studiando i loro principi di base. Infine, sfruttiamo tali principi per costruire una tecnica di watermarking pervasivo. La robustezza rimane una difficile, quanto affascinante, questione ancora da risolvere.Software retains most of the know-how required fot its development. Because nowadays software can be easily cloned and spread worldwide, the risk of intellectual property infringement on a global scale is high. One of the most viable solutions to this problem is to endow software with a watermark. Good watermarks are required not only to state unambiguously the owner of software, but also to be resilient and pervasive. In this thesis we base resiliency and pervasiveness on trace semantics. We point out loops as pervasive programming constructs and we introduce loop transformations as the basic block of pervasive watermarking schemes. We survey several loop transformations, outlining their underlying principles. Then we exploit these principles to build some pervasive watermarking techniques. Resiliency still remains a big and challenging open issue

    Watermarking technique for wireless multimedia sensor networks: A state of the art

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are an emerging type of sensor network which contain sensor nodes equipped with microphones, cameras, and other sensors that produce multimedia content. These networks have the potential to enable a large class of applications ranging from military to modern healthcare. Multimedia nodes are susceptible to various types of attack, such as cropping, compression, or even physical capture and sensor replacement. Hence, security becomes an important issue in WMSNs. However, given the fact that sensors are resource constrained, the traditional intensive security algorithms are not well suited for WMSNs. This makes the traditional security techniques, based on data encryption, not very suitable for WMSNs. Watermarking techniques are usually computationally lightweight and do not require much memory resources. These techniques are being considered as an attractive alternative to the traditional techniques, because of their light resource requirements. The objective of this paper is to present a critical analysis of the existing state-of-the-art watermarking algorithms developed for WMSNs

    Secure Communication in Wireless Multimedia Sensor Networks using Watermarking

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are an emerging type of sensor networks which contain sensor nodes equipped with microphones, cameras, and other sensors that producing multimedia content. These networks have the potential to enable a large class of applications ranging from military to modern healthcare. Since in WMSNs information is multimedia by nature and it uses wireless link as mode of communication so this posse?s serious security threat to this network. Thereby, the security mechanisms to protect WMSNs communication have found importance lately. However given the fact that WMSN nodes are resources constrained, so the traditionally intensive security algorithm is not well suited for WMSNs. Hence in this research, we aim to a develop lightweight digital watermarking enabled techniques as a security approach to ensure secure wireless communication. Finally aim is to provide a secure communication framework for WMSNs by developing new
    • …
    corecore