241 research outputs found

    MAA*: A Heuristic Search Algorithm for Solving Decentralized POMDPs

    Full text link
    We present multi-agent A* (MAA*), the first complete and optimal heuristic search algorithm for solving decentralized partially-observable Markov decision problems (DEC-POMDPs) with finite horizon. The algorithm is suitable for computing optimal plans for a cooperative group of agents that operate in a stochastic environment such as multirobot coordination, network traffic control, `or distributed resource allocation. Solving such problems efiectively is a major challenge in the area of planning under uncertainty. Our solution is based on a synthesis of classical heuristic search and decentralized control theory. Experimental results show that MAA* has significant advantages. We introduce an anytime variant of MAA* and conclude with a discussion of promising extensions such as an approach to solving infinite horizon problems.Comment: Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005

    Decentralized Control of Partially Observable Markov Decision Processes using Belief Space Macro-actions

    Get PDF
    The focus of this paper is on solving multi-robot planning problems in continuous spaces with partial observability. Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for multi-robot coordination problems, but representing and solving Dec-POMDPs is often intractable for large problems. To allow for a high-level representation that is natural for multi-robot problems and scalable to large discrete and continuous problems, this paper extends the Dec-POMDP model to the decentralized partially observable semi-Markov decision process (Dec-POSMDP). The Dec-POSMDP formulation allows asynchronous decision-making by the robots, which is crucial in multi-robot domains. We also present an algorithm for solving this Dec-POSMDP which is much more scalable than previous methods since it can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed method's performance is evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent multi-robot problems and provide high-quality solutions for large-scale problems

    Energy Efficient Execution of POMDP Policies

    Get PDF
    Recent advances in planning techniques for partially observable Markov decision processes have focused on online search techniques and offline point-based value iteration. While these techniques allow practitioners to obtain policies for fairly large problems, they assume that a non-negligible amount of computation can be done between each decision point. In contrast, the recent proliferation of mobile and embedded devices has lead to a surge of applications that could benefit from state of the art planning techniques if they can operate under severe constraints on computational resources. To that effect, we describe two techniques to compile policies into controllers that can be executed by a mere table lookup at each decision point. The first approach compiles policies induced by a set of alpha vectors (such as those obtained by point-based techniques) into approximately equivalent controllers, while the second approach performs a simulation to compile arbitrary policies into approximately equivalent controllers. We also describe an approach to compress controllers by removing redundant and dominated nodes, often yielding smaller and yet better controllers. Further compression and higher value can sometimes be obtained by considering stochastic controllers. The compilation and compression techniques are demonstrated on benchmark problems as well as a mobile application to help persons with Alzheimer's to way-find. The battery consumption of several POMDP policies is compared against finite-state controllers learned using methods introduced in this paper. Experiments performed on the Nexus 4 phone show that finite-state controllers are the least battery consuming POMDP policies

    Scalable accelerated decentralized multi-robot policy search in continuous observation spaces

    Get PDF
    This paper presents the first ever approach for solving continuous-observation Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and their semi-Markovian counterparts, Dec-POSMDPs. This contribution is especially important in robotics, where a vast number of sensors provide continuous observation data. A continuous-observation policy representation is introduced using Stochastic Kernel-based Finite State Automata (SK-FSAs). An SK-FSA search algorithm titled Entropy-based Policy Search using Continuous Kernel Observations (EPSCKO) is introduced and applied to the first ever continuous-observation Dec-POMDP/Dec-POSMDP domain, where it significantly outperforms state-of-the-art discrete approaches. This methodology is equally applicable to Dec-POMDPs and Dec-POSMDPs, though the empirical analysis presented focuses on Dec-POSMDPs due to their higher scalability. To improve convergence, an entropy injection policy search acceleration approach for both continuous and discrete observation cases is also developed and shown to improve convergence rates without degrading policy quality.Boeing Compan

    Multi-Agent Reinforcement Learning as a Rehearsal for Decentralized Planning

    Get PDF
    Decentralized partially observable Markov decision processes (Dec-POMDPs) are a powerful tool for modeling multi-agent planning and decision-making under uncertainty. Prevalent Dec-POMDP solution techniques require centralized computation given full knowledge of the underlying model. Multi-agent reinforcement learning (MARL) based approaches have been recently proposed for distributed solution of Dec-POMDPs without full prior knowledge of the model, but these methods assume that conditions during learning and policy execution are identical. In some practical scenarios this may not be the case. We propose a novel MARL approach in which agents are allowed to rehearse with information that will not be available during policy execution. The key is for the agents to learn policies that do not explicitly rely on these rehearsal features. We also establish a weak convergence result for our algorithm, RLaR, demonstrating that RLaR converges in probability when certain conditions are met. We show experimentally that incorporating rehearsal features can enhance the learning rate compared to non-rehearsal-based learners, and demonstrate fast, (near) optimal performance on many existing benchmark Dec-POMDP problems. We also compare RLaR against an existing approximate Dec-POMDP solver which, like RLaR, does not assume a priori knowledge of the model. While RLaR׳s policy representation is not as scalable, we show that RLaR produces higher quality policies for most problems and horizons studied

    Can bounded and self-interested agents be teammates? Application to planning in ad hoc teams

    Get PDF
    Planning for ad hoc teamwork is challenging because it involves agents collaborating without any prior coordination or communication. The focus is on principled methods for a single agent to cooperate with others. This motivates investigating the ad hoc teamwork problem in the context of self-interested decision-making frameworks. Agents engaged in individual decision making in multiagent settings face the task of having to reason about other agents’ actions, which may in turn involve reasoning about others. An established approximation that operationalizes this approach is to bound the infinite nesting from below by introducing level 0 models. For the purposes of this study, individual, self-interested decision making in multiagent settings is modeled using interactive dynamic influence diagrams (I-DID). These are graphical models with the benefit that they naturally offer a factored representation of the problem, allowing agents to ascribe dynamic models to others and reason about them. We demonstrate that an implication of bounded, finitely-nested reasoning by a self-interested agent is that we may not obtain optimal team solutions in cooperative settings, if it is part of a team. We address this limitation by including models at level 0 whose solutions involve reinforcement learning. We show how the learning is integrated into planning in the context of I-DIDs. This facilitates optimal teammate behavior, and we demonstrate its applicability to ad hoc teamwork on several problem domains and configurations

    Decentralized control of Partially Observable Markov Decision Processes using belief space macro-actions

    Get PDF
    The focus of this paper is on solving multi-robot planning problems in continuous spaces with partial observability. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems, but representing and solving Dec-POMDPs is often intractable for large problems. To allow for a high-level representation that is natural for multi-robot problems and scalable to large discrete and continuous problems, this paper extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP). The Dec-POSMDP formulation allows asynchronous decision-making by the robots, which is crucial in multi-robot domains. We also present an algorithm for solving this Dec-POSMDP which is much more scalable than previous methods since it can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed method's performance is evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent multi-robot problems and provide high-quality solutions for large-scale problems
    • …
    corecore