4,585 research outputs found

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Surgical Phase Recognition of Short Video Shots Based on Temporal Modeling of Deep Features

    Full text link
    Recognizing the phases of a laparoscopic surgery (LS) operation form its video constitutes a fundamental step for efficient content representation, indexing and retrieval in surgical video databases. In the literature, most techniques focus on phase segmentation of the entire LS video using hand-crafted visual features, instrument usage signals, and recently convolutional neural networks (CNNs). In this paper we address the problem of phase recognition of short video shots (10s) of the operation, without utilizing information about the preceding/forthcoming video frames, their phase labels or the instruments used. We investigate four state-of-the-art CNN architectures (Alexnet, VGG19, GoogleNet, and ResNet101), for feature extraction via transfer learning. Visual saliency was employed for selecting the most informative region of the image as input to the CNN. Video shot representation was based on two temporal pooling mechanisms. Most importantly, we investigate the role of 'elapsed time' (from the beginning of the operation), and we show that inclusion of this feature can increase performance dramatically (69% vs. 75% mean accuracy). Finally, a long short-term memory (LSTM) network was trained for video shot classification based on the fusion of CNN features with 'elapsed time', increasing the accuracy to 86%. Our results highlight the prominent role of visual saliency, long-range temporal recursion and 'elapsed time' (a feature so far ignored), for surgical phase recognition.Comment: 6 pages, 4 figures, 6 table

    Dynamic Unary Convolution in Transformers

    Get PDF
    It is uncertain whether the power of transformer architectures can complement existing convolutional neural networks. A few recent attempts have combined convolution with transformer design through a range of structures in series, where the main contribution of this paper is to explore a parallel design approach. While previous transformed-based approaches need to segment the image into patch-wise tokens, we observe that the multi-head self-attention conducted on convolutional features is mainly sensitive to global correlations and that the performance degrades when these correlations are not exhibited. We propose two parallel modules along with multi-head self-attention to enhance the transformer. For local information, a dynamic local enhancement module leverages convolution to dynamically and explicitly enhance positive local patches and suppress the response to less informative ones. For mid-level structure, a novel unary co-occurrence excitation module utilizes convolution to actively search the local co-occurrence between patches. The parallel-designed Dynamic Unary Convolution in Transformer (DUCT) blocks are aggregated into a deep architecture, which is comprehensively evaluated across essential computer vision tasks in image-based classification, segmentation, retrieval and density estimation. Both qualitative and quantitative results show our parallel convolutional-transformer approach with dynamic and unary convolution outperforms existing series-designed structures

    Fine-Grained Product Class Recognition for Assisted Shopping

    Full text link
    Assistive solutions for a better shopping experience can improve the quality of life of people, in particular also of visually impaired shoppers. We present a system that visually recognizes the fine-grained product classes of items on a shopping list, in shelves images taken with a smartphone in a grocery store. Our system consists of three components: (a) We automatically recognize useful text on product packaging, e.g., product name and brand, and build a mapping of words to product classes based on the large-scale GroceryProducts dataset. When the user populates the shopping list, we automatically infer the product class of each entered word. (b) We perform fine-grained product class recognition when the user is facing a shelf. We discover discriminative patches on product packaging to differentiate between visually similar product classes and to increase the robustness against continuous changes in product design. (c) We continuously improve the recognition accuracy through active learning. Our experiments show the robustness of the proposed method against cross-domain challenges, and the scalability to an increasing number of products with minimal re-training.Comment: Accepted at ICCV Workshop on Assistive Computer Vision and Robotics (ICCV-ACVR) 201

    Adversarial Virtual Exemplar Learning for Label-Frugal Satellite Image Change Detection

    Full text link
    Satellite image change detection aims at finding occurrences of targeted changes in a given scene taken at different instants. This task is highly challenging due to the acquisition conditions and also to the subjectivity of changes. In this paper, we investigate satellite image change detection using active learning. Our method is interactive and relies on a question and answer model which asks the oracle (user) questions about the most informative display (dubbed as virtual exemplars), and according to the user's responses, updates change detections. The main contribution of our method consists in a novel adversarial model that allows frugally probing the oracle with only the most representative, diverse and uncertain virtual exemplars. The latter are learned to challenge the most the trained change decision criteria which ultimately leads to a better re-estimate of these criteria in the following iterations of active learning. Conducted experiments show the out-performance of our proposed adversarial display model against other display strategies as well as the related work.Comment: arXiv admin note: substantial text overlap with arXiv:2203.1155

    Efficient Video Transformers with Spatial-Temporal Token Selection

    Full text link
    Video transformers have achieved impressive results on major video recognition benchmarks, which however suffer from high computational cost. In this paper, we present STTS, a token selection framework that dynamically selects a few informative tokens in both temporal and spatial dimensions conditioned on input video samples. Specifically, we formulate token selection as a ranking problem, which estimates the importance of each token through a lightweight scorer network and only those with top scores will be used for downstream evaluation. In the temporal dimension, we keep the frames that are most relevant to the action categories, while in the spatial dimension, we identify the most discriminative region in feature maps without affecting the spatial context used in a hierarchical way in most video transformers. Since the decision of token selection is non-differentiable, we employ a perturbed-maximum based differentiable Top-K operator for end-to-end training. We mainly conduct extensive experiments on Kinetics-400 with a recently introduced video transformer backbone, MViT. Our framework achieves similar results while requiring 20% less computation. We also demonstrate our approach is generic for different transformer architectures and video datasets. Code is available at https://github.com/wangjk666/STTS.Comment: Accepted by ECCV 202
    corecore