1,423 research outputs found

    Cryptographic Tools for Privacy Preservation

    Get PDF
    Data permeates every aspect of our daily life and it is the backbone of our digitalized society. Smartphones, smartwatches and many more smart devices measure, collect, modify and share data in what is known as the Internet of Things.Often, these devices don’t have enough computation power/storage space thus out-sourcing some aspects of the data management to the Cloud. Outsourcing computation/storage to a third party poses natural questions regarding the security and privacy of the shared sensitive data.Intuitively, Cryptography is a toolset of primitives/protocols of which security prop- erties are formally proven while Privacy typically captures additional social/legislative requirements that relate more to the concept of “trust” between people, “how” data is used and/or “who” has access to data. This thesis separates the concepts by introducing an abstract model that classifies data leaks into different types of breaches. Each class represents a specific requirement/goal related to cryptography, e.g. confidentiality or integrity, or related to privacy, e.g. liability, sensitive data management and more.The thesis contains cryptographic tools designed to provide privacy guarantees for different application scenarios. In more details, the thesis:(a) defines new encryption schemes that provide formal privacy guarantees such as theoretical privacy definitions like Differential Privacy (DP), or concrete privacy-oriented applications covered by existing regulations such as the European General Data Protection Regulation (GDPR);(b) proposes new tools and procedures for providing verifiable computation’s guarantees in concrete scenarios for post-quantum cryptography or generalisation of signature schemes;(c) proposes a methodology for utilising Machine Learning (ML) for analysing the effective security and privacy of a crypto-tool and, dually, proposes a secure primitive that allows computing specific ML algorithm in a privacy-preserving way;(d) provides an alternative protocol for secure communication between two parties, based on the idea of communicating in a periodically timed fashion

    Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles

    Get PDF
    Achieving fairness and soundness in non-simultaneous rational secret sharing schemes has proved to be challenging. On the one hand, soundness can be ensured by providing side information related to the secret as a check, but on the other, this can be used by deviant players to compromise fairness. To overcome this, the idea of incorporating a time delay was suggested in the literature: in particular, time-delay encryption based on memory-bound functions has been put forth as a solution. In this paper, we propose a different approach to achieve such delay, namely using homomorphic time-lock puzzles (HTLPs), introduced at CRYPTO 2019, and construct a fair and sound rational secret sharing scheme in the non-simultaneous setting from HTLPs. HTLPs are used to embed sub-shares of the secret for a predetermined time. This allows to restore fairness of the secret reconstruction phase, despite players having access to information related to the secret which is required to ensure soundness of the scheme. Key to our construction is the fact that the time-lock puzzles are homomorphic so that players can compactly evaluate sub-shares. Without this efficiency improvement, players would have to independently solve each puzzle sent from the other players to obtain a share of the secret, which would be computationally inefficient. We argue that achieving both fairness and soundness in a non-simultaneous scheme using a time delay based on CPU-bound functions rather than memory-bound functions is more cost effective and realistic in relation to the implementation of the construction

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure

    Timed Secret Sharing

    Get PDF
    Secret sharing has been a promising tool in cryptographic schemes for decades. It allows a dealer to split a secret into some pieces of shares that carry no sensitive information on their own when being treated individually but lead to the original secret when having a sufficient number of them together. Existing schemes lack considering a guaranteed delay prior to secret reconstruction and implicitly assume once the dealer shares the secret, a sufficient number of shareholders will get together and recover the secret at their wish. This, however, may lead to security breaches when a timely reconstruction of the secret matters as the early knowledge of a single revealed share is catastrophic assuming a threshold adversary. This paper presents the notion of timed secret sharing (TSS), providing lower and upper time bounds for secret reconstruction with the use of time-based cryptography. The recent advances in the literature including short-lived proofs [Asiacrypt 2022], enable us to realize an upper time bound shown to be useful in breaking public goods game, an inherent issue in secret sharing-based systems. Moreover, we establish an interesting trade-off between time and fault tolerance in a secret sharing scheme by having dealer gradually release additional shares over time, offering another approach with the same goal. We propose several constructions that offer a range of security properties while maintaining practical efficiency. Our constructions leverage a variety of techniques and state-of-the-art primitives

    A Good Use of Time: Techniques and Applications of Delay-Based Cryptography

    Get PDF
    • …
    corecore