29,364 research outputs found

    On the Communication Complexity of Secure Computation

    Full text link
    Information theoretically secure multi-party computation (MPC) is a central primitive of modern cryptography. However, relatively little is known about the communication complexity of this primitive. In this work, we develop powerful information theoretic tools to prove lower bounds on the communication complexity of MPC. We restrict ourselves to a 3-party setting in order to bring out the power of these tools without introducing too many complications. Our techniques include the use of a data processing inequality for residual information - i.e., the gap between mutual information and G\'acs-K\"orner common information, a new information inequality for 3-party protocols, and the idea of distribution switching by which lower bounds computed under certain worst-case scenarios can be shown to apply for the general case. Using these techniques we obtain tight bounds on communication complexity by MPC protocols for various interesting functions. In particular, we show concrete functions that have "communication-ideal" protocols, which achieve the minimum communication simultaneously on all links in the network. Also, we obtain the first explicit example of a function that incurs a higher communication cost than the input length in the secure computation model of Feige, Kilian and Naor (1994), who had shown that such functions exist. We also show that our communication bounds imply tight lower bounds on the amount of randomness required by MPC protocols for many interesting functions.Comment: 37 page

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    Black-Box Separations for Differentially Private Protocols

    Get PDF
    We study the maximal achievable accuracy of distributed differentially private protocols for a large natural class of boolean functions, in the computational setting. In the information theoretic model, McGregor et al. [FOCS 2010] and Goyal et al. [CRYPTO 2013] have demonstrated several functionalities whose differentially private computation results in much lower accuracies in the distributed setting, as compared to the client-server setting. We explore lower bounds on the computational assumptions under which this particular accuracy gap can possibly be reduced for general two-party boolean output functions. In the distributed setting, it is possible to achieve optimal accuracy, i.e. the maximal achievable accu-racy in the client-server setting, for any function, if a semi-honest secure protocol for oblivious transfer exists. However, we show the following strong impossibility results: â—¦ For any boolean function and fixed level of privacy, the maximal achievable accuracy of any (fully) black-box construction based on existence of key-agreement protocols is at least a constant smaller than optimal achievable accuracy. Since key-agreement protocols imply the existence of one-way functions, this separation also extends to one-way functions
    • …
    corecore