1,495 research outputs found

    Tensor Methods for Nonlinear Matrix Completion

    Full text link
    In the low rank matrix completion (LRMC) problem, the low rank assumption means that the columns (or rows) of the matrix to be completed are points on a low-dimensional linear algebraic variety. This paper extends this thinking to cases where the columns are points on a low-dimensional nonlinear algebraic variety, a problem we call Low Algebraic Dimension Matrix Completion (LADMC). Matrices whose columns belong to a union of subspaces (UoS) are an important special case. We propose a LADMC algorithm that leverages existing LRMC methods on a tensorized representation of the data. For example, a second-order tensorization representation is formed by taking the outer product of each column with itself, and we consider higher order tensorizations as well. This approach will succeed in many cases where traditional LRMC is guaranteed to fail because the data are low-rank in the tensorized representation but not in the original representation. We also provide a formal mathematical justification for the success of our method. In particular, we show bounds of the rank of these data in the tensorized representation, and we prove sampling requirements to guarantee uniqueness of the solution. Interestingly, the sampling requirements of our LADMC algorithm nearly match the information theoretic lower bounds for matrix completion under a UoS model. We also provide experimental results showing that the new approach significantly outperforms existing state-of-the-art methods for matrix completion in many situations

    CUR Decompositions, Similarity Matrices, and Subspace Clustering

    Get PDF
    A general framework for solving the subspace clustering problem using the CUR decomposition is presented. The CUR decomposition provides a natural way to construct similarity matrices for data that come from a union of unknown subspaces U=Mi=1Si\mathscr{U}=\underset{i=1}{\overset{M}\bigcup}S_i. The similarity matrices thus constructed give the exact clustering in the noise-free case. Additionally, this decomposition gives rise to many distinct similarity matrices from a given set of data, which allow enough flexibility to perform accurate clustering of noisy data. We also show that two known methods for subspace clustering can be derived from the CUR decomposition. An algorithm based on the theoretical construction of similarity matrices is presented, and experiments on synthetic and real data are presented to test the method. Additionally, an adaptation of our CUR based similarity matrices is utilized to provide a heuristic algorithm for subspace clustering; this algorithm yields the best overall performance to date for clustering the Hopkins155 motion segmentation dataset.Comment: Approximately 30 pages. Current version contains improved algorithm and numerical experiments from the previous versio

    Blind Compressed Sensing Over a Structured Union of Subspaces

    Full text link
    This paper addresses the problem of simultaneous signal recovery and dictionary learning based on compressive measurements. Multiple signals are analyzed jointly, with multiple sensing matrices, under the assumption that the unknown signals come from a union of a small number of disjoint subspaces. This problem is important, for instance, in image inpainting applications, in which the multiple signals are constituted by (incomplete) image patches taken from the overall image. This work extends standard dictionary learning and block-sparse dictionary optimization, by considering compressive measurements, e.g., incomplete data). Previous work on blind compressed sensing is also generalized by using multiple sensing matrices and relaxing some of the restrictions on the learned dictionary. Drawing on results developed in the context of matrix completion, it is proven that both the dictionary and signals can be recovered with high probability from compressed measurements. The solution is unique up to block permutations and invertible linear transformations of the dictionary atoms. The recovery is contingent on the number of measurements per signal and the number of signals being sufficiently large; bounds are derived for these quantities. In addition, this paper presents a computationally practical algorithm that performs dictionary learning and signal recovery, and establishes conditions for its convergence to a local optimum. Experimental results for image inpainting demonstrate the capabilities of the method

    Rate Optimal Denoising of Simultaneously Sparse and Low Rank Matrices

    Full text link
    We study minimax rates for denoising simultaneously sparse and low rank matrices in high dimensions. We show that an iterative thresholding algorithm achieves (near) optimal rates adaptively under mild conditions for a large class of loss functions. Numerical experiments on synthetic datasets also demonstrate the competitive performance of the proposed method
    corecore