7,695 research outputs found

    Learning from medical data streams: an introduction

    Get PDF
    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge extraction and evidence-based clinical decision support in scenarios where data are produced as a continuous flow. This year's edition of AIME, the Conference on Artificial Intelligence in Medicine, enabled the sound discussion of this area of research, mainly by the inclusion of a dedicated workshop. This paper is an introduction to LEMEDS, the Learning from Medical Data Streams workshop, which highlights the contributed papers, the invited talk and expert panel discussion, as well as related papers accepted to the main conference

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    Business Process Modeling Abstraction Based on Semi-Supervised Clustering Analysis

    Get PDF
    The most prominent Business Process Model Abstraction (BPMA) use case is the construction of the process ā€œquick viewā€ for rapidly comprehending a complex process. Some researchers propose process abstraction methods to aggregate the activities on the basis of their semantic similarity. One important clustering technique used in these methods is traditional k-means cluster analysis which so far is an unsupervised process without any priori information, and most of the techniques aggregate the activities only according to business semantics without considering the requirement of an order-preserving model transformation. The paper proposes a BPMA method based on semi-supervised clustering which chooses the initial clusters based on the refined process structure tree and designs constraints by combining the control flow consistency of the process and the semantic similarity of the activities to guide the clustering process. To be more precise, the constraint function is discovered by mining from a process model collection enriched with subprocess relations. The proposed method is validated by applying it to a process model repository in use. In an experimental validation, the proposed method is compared to the traditional k-means clustering (parameterized with randomly chosen initial clusters and an only semantics-based distance measure), showing that the approach closely approximates the decisions of the involved modelers to cluster activities. As such, the paper contributes to the development of modeling support for effective process model abstraction, facilitating the use of business process models in practice

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Modeling Rare Interactions in Time Series Data Through Qualitative Change: Application to Outcome Prediction in Intensive Care Units

    Get PDF
    Many areas of research are characterised by the deluge of large-scale highly-dimensional time-series data. However, using the data available for prediction and decision making is hampered by the current lag in our ability to uncover and quantify true interactions that explain the outcomes.We are interested in areas such as intensive care medicine, which are characterised by i) continuous monitoring of multivariate variables and non-uniform sampling of data streams, ii) the outcomes are generally governed by interactions between a small set of rare events, iii) these interactions are not necessarily definable by specific values (or value ranges) of a given group of variables, but rather, by the deviations of these values from the normal state recorded over time, iv) the need to explain the predictions made by the model. Here, while numerous data mining models have been formulated for outcome prediction, they are unable to explain their predictions. We present a model for uncovering interactions with the highest likelihood of generating the outcomes seen from highly-dimensional time series data. Interactions among variables are represented by a relational graph structure, which relies on qualitative abstractions to overcome non-uniform sampling and to capture the semantics of the interactions corresponding to the changes and deviations from normality of variables of interest over time. Using the assumption that similar templates of small interactions are responsible for the outcomes (as prevalent in the medical domains), we reformulate the discovery task to retrieve the most-likely templates from the data.Comment: 8 pages, 3 figures. Accepted for publication in the European Conference of Artificial Intelligence (ECAI 2020
    • ā€¦
    corecore