118 research outputs found

    Smart Meter Privacy with an Energy Harvesting Device and Instantaneous Power Constraints

    Full text link
    A smart meter (SM) periodically measures end-user electricity consumption and reports it to a utility provider (UP). Despite the advantages of SMs, their use leads to serious concerns about consumer privacy. In this paper, SM privacy is studied by considering the presence of an energy harvesting device (EHD) as a means of masking the user's input load. The user can satisfy part or all of his/her energy needs from the EHD, and hence, less information can be leaked to the UP via the SM. The EHD is typically equipped with a rechargeable energy storage device, i.e., a battery, whose instantaneous energy content limits the user's capability in covering his/her energy usage. Privacy is measured by the information leaked about the user's real energy consumption when the UP observes the energy requested from the grid, which the SM reads and reports to the UP. The minimum information leakage rate is characterized as a computable information theoretic single-letter expression when the EHD battery capacity is either infinite or zero. Numerical results are presented for a discrete binary input load to illustrate the potential privacy gains from the existence of a storage device.Comment: To be published in IEEE ICC201

    Smart Meter Privacy with Renewable Energy and a Finite Capacity Battery

    Full text link
    We address the smart meter (SM) privacy problem by considering the availability of a renewable energy source (RES) and a battery which can be exploited by a consumer to partially hide the consumption pattern from the utility provider (UP). Privacy is measured by the mutual information rate between the consumer's energy consumption and the renewable energy generation process, and the energy received from the grid, where the latter is known by the UP through the SM readings, and the former two are to be kept private. By expressing the information leakage as an additive quantity, we cast the problem as a stochastic control problem, and formulate the corresponding Bellman equations.Comment: To appear in IEEE SPAWC 201

    Privacy-Cost Management in Smart Meters with Mutual Information-Based Reinforcement Learning

    Full text link
    The rapid development and expansion of the Internet of Things (IoT) paradigm has drastically increased the collection and exchange of data between sensors and systems, a phenomenon that raises serious privacy concerns in some domains. In particular, Smart Meters (SMs) share fine-grained electricity consumption of households with utility providers that can potentially violate users' privacy as sensitive information is leaked through the data. In order to enhance privacy, the electricity consumers can exploit the availability of physical resources such as a rechargeable battery (RB) to shape their power demand as dictated by a Privacy-Cost Management Unit (PCMU). In this paper, we present a novel method to learn the PCMU policy using Deep Reinforcement Learning (DRL). We adopt the mutual information (MI) between the user's demand load and the masked load seen by the power grid as a reliable and general privacy measure. Unlike previous studies, we model the whole temporal correlation in the data to learn the MI in its general form and use a neural network to estimate the MI-based reward signal to guide the PCMU learning process. This approach is combined with a model-free DRL algorithm known as the Deep Double Q-Learning (DDQL) method. The performance of the complete DDQL-MI algorithm is assessed empirically using an actual SMs dataset and compared with simpler privacy measures. Our results show significant improvements over state-of-the-art privacy-aware demand shaping methods

    Deep Directed Information-Based Learning for Privacy-Preserving Smart Meter Data Release

    Full text link
    The explosion of data collection has raised serious privacy concerns in users due to the possibility that sharing data may also reveal sensitive information. The main goal of a privacy-preserving mechanism is to prevent a malicious third party from inferring sensitive information while keeping the shared data useful. In this paper, we study this problem in the context of time series data and smart meters (SMs) power consumption measurements in particular. Although Mutual Information (MI) between private and released variables has been used as a common information-theoretic privacy measure, it fails to capture the causal time dependencies present in the power consumption time series data. To overcome this limitation, we introduce the Directed Information (DI) as a more meaningful measure of privacy in the considered setting and propose a novel loss function. The optimization is then performed using an adversarial framework where two Recurrent Neural Networks (RNNs), referred to as the releaser and the adversary, are trained with opposite goals. Our empirical studies on real-world data sets from SMs measurements in the worst-case scenario where an attacker has access to all the training data set used by the releaser, validate the proposed method and show the existing trade-offs between privacy and utility.Comment: to appear in IEEESmartGridComm 2019. arXiv admin note: substantial text overlap with arXiv:1906.0642
    • …
    corecore