933 research outputs found

    MPSoCBench : um framework para avaliação de ferramentas e metodologias para sistemas multiprocessados em chip

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip (MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em simuladores, antes de definir os últimos detalhes da arquitetura. No entanto, a simulação só é eficiente quando utiliza ferramentas de modelagem que suportem a descrição do comportamento do sistema em um elevado nível de abstração. A escassez de plataformas virtuais de MPSoCs que integrem hardware e software escaláveis nos motivou a desenvolver o MPSoCBench, que consiste de um conjunto escalável de MPSoCs incluindo quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em plataformas com 1, 2, 4, 8, 16, 32 e 64 núcleos, cross-compiladores, IPs, interconexões, 17 aplicações paralelas e estimativa de consumo de energia para os principais componentes (processadores, roteadores, memória principal e caches). Uma importante demanda em projetos MPSoC é atender às restrições de consumo de energia o mais cedo possível. Considerando que o desempenho do processador está diretamente relacionado ao consumo, há um crescente interesse em explorar o trade-off entre consumo de energia e desempenho, tendo em conta o domínio da aplicação alvo. Técnicas de escalabilidade dinâmica de freqüência e voltagem fundamentam-se em gerenciar o nível de tensão e frequência da CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a eficiência energética e desempenho, foram adicionados recursos ao MPSoCBench, visando explorar escalabilidade dinâmica de voltaegem e frequência (DVFS) e foram validados três mecanismos com base na estimativa dinâmica de energia e taxa de uso de CPUAbstract: Recent design methodologies and tools aim at enhancing the design productivity by providing a software development platform before the definition of the final Multiprocessor System on Chip (MPSoC) architecture details. However, simulation can only be efficiently performed when using a modeling and simulation engine that supports system behavior description at a high abstraction level. The lack of MPSoC virtual platform prototyping integrating both scalable hardware and software in order to create and evaluate new methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MPSoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17 parallel version of software from well-known benchmarks, and power consumption estimation for main components (processors, routers, memory, and caches). An important demand in MPSoC designs is the addressing of energy consumption constraints as early as possible. Whereas processor performance comes with a high power cost, there is an increasing interest in exploring the trade-off between power and performance, taking into account the target application domain. Dynamic Voltage and Frequency Scaling techniques adaptively scale the voltage and frequency levels of the CPU allowing it to reach just enough performance to process the system workload while meeting throughput constraints, and thereby, reducing the energy consumption. To explore this wide design space for energy efficiency and performance, both for hardware and software components, we provided MPSoCBench features to explore dynamic voltage and frequency scalability (DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rateDoutoradoCiência da ComputaçãoDoutora em Ciência da Computaçã

    Object oriented execution model (OOM)

    Get PDF
    This paper considers implementing the Object Oriented Programming Model directly in the hardware to serve as a base to exploit object-level parallelism, speculation and heterogeneous computing. Towards this goal, we present a new execution model called Object Oriented execution Model - OOM - that implements the OO Programming Models. All OOM hardware structures are objects and the OOM Instruction Set directly utilizes objects while hiding other complex hardware structures. OOM maintains all high-level programming language information until execution time. This enables efficient extraction of available parallelism in OO serial code at execution time with minimal compiler support. Our results show that OOM utilizes the available parallelism better than the OoO (Out-of-Order) modelPeer ReviewedPostprint (published version

    Harmless, a Hardware Architecture Description Language Dedicated to Real-Time Embedded System Simulation

    Get PDF
    International audienceValidation and Verification of embedded systems through simulation can be conducted at many levels, from the simulation of a high-level application model to the simulation of the actual binary code using an accurate model of the processor. However, for real-time applications, the simulated execution time must be as close as possible to the execution time on the actual platform and in this case the latter gives the closest results. The main drawback of the simulation of application's software using an accurate model of the processor resides in the development of a handwritten simulator which is a difficult and tedious task. This paper presents Harmless, a hardware Architecture Description Language (ADL) that mainly targets real-time embedded systems. Harmless is dedicated to the generation of simulator of the hardware platform to develop and test real-time embedded applications. Compared to existing ADLs, Harmless1) offers a more flexible description of the Instruction Set Architecture (ISA) 2) allows to describe the microarchitecture independently of the ISA to ease its reuse and 3) compares favorably to simulators generated by the existing ADLs toolsets

    Description and Optimization of Abstract Machines in a Dialect of Prolog

    Full text link
    In order to achieve competitive performance, abstract machines for Prolog and related languages end up being large and intricate, and incorporate sophisticated optimizations, both at the design and at the implementation levels. At the same time, efficiency considerations make it necessary to use low-level languages in their implementation. This makes them laborious to code, optimize, and, especially, maintain and extend. Writing the abstract machine (and ancillary code) in a higher-level language can help tame this inherent complexity. We show how the semantics of most basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog, the abstract machine description can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of state-of-the-art, highly-tuned, hand-crafted emulators.Comment: 56 pages, 46 figures, 5 tables, To appear in Theory and Practice of Logic Programming (TPLP

    Performance analysis of sequence alignment applications

    Get PDF
    Advances in molecular biology have led to a continued growth in the biological information generated by the scientific community. Additionally, this area has become a multi-disciplinary field, including components of mathematics, biology, chemistry, and computer science, generating several challenges in the scientific community from different points of view. For this reason, bioinformatic applications represent an increasingly important workload. However, even though the importance of this field is clear, common bioinformatic applications and their implications on micro-architectural design have not received enough attention from the computer architecture community. This paper presents a micro-architecture performance analysis of recognized bioinformatic applications for the comparison and alignment of biological sequences, including BLAST, FASTA and some recognized parallel implementations of the Smith-Waterman algorithm that use the Altivec SIMD extension to speed-up the performance. We adopt a simulation-based methodology to perform a detailed workload characterization. We analyze architectural and micro-architectural aspects like pipeline configurations, issue widths, functional unit mixes, memory hierarchy and their implications on the performance behavior. We have found that the memory subsystem is the component with more impact in the performance of the BLAST heuristic, the branch predictor is responsible for the major performance loss for FASTA and SSEARCH34, and long dependency chains are the limiting factor in the SIMD implementations of Smith-Waterman.Peer ReviewedPostprint (published version
    • …
    corecore