559 research outputs found

    Collaborative Information Processing in Wireless Sensor Networks for Diffusive Source Estimation

    Get PDF
    In this dissertation, we address the issue of collaborative information processing for diffusive source parameter estimation using wireless sensor networks (WSNs) capable of sensing in dispersive medium/environment, from signal processing perspective. We begin the dissertation by focusing on the mathematical formulation of a special diffusion phenomenon, i.e., an underwater oil spill, along with statistical algorithms for meaningful analysis of sensor data leading to efficient estimation of desired parameters of interest. The objective is to obtain an analytical solution to the problem, rather than using non-model based sophisticated numerical techniques. We tried to make the physical diffusion model as much appropriate as possible, while maintaining some pragmatic and reasonable assumptions for the simplicity of exposition and analytical derivation. The dissertation studies both source localization and tracking for static and moving diffusive sources respectively. For static diffusive source localization, we investigate two parametric estimation techniques based on the maximum-likelihood (ML) and the best linear unbiased estimator (BLUE) for a special case of our obtained physical dispersion model. We prove the consistency and asymptotic normality of the obtained ML solution when the number of sensor nodes and samples approach infinity, and derive the Cramer-Rao lower bound (CRLB) on its performance. In case of a moving diffusive source, we propose a particle filter (PF) based target tracking scheme for moving diffusive source, and analytically derive the posterior Cramer-Rao lower bound (PCRLB) for the moving source state estimates as a theoretical performance bound. Further, we explore nonparametric, machine learning based estimation technique for diffusive source parameter estimation using Dirichlet process mixture model (DPMM). Since real data are often complicated, no parametric model is suitable. As an alternative, we exploit the rich tools of nonparametric Bayesian methods, in particular the DPMM, which provides us with a flexible and data-driven estimation process. We propose DPMM based static diffusive source localization algorithm and provide analytical proof of convergence. The proposed algorithm is also extended to the scenario when multiple diffusive sources of same kind are present in the diffusive field of interest. Efficient power allocation can play an important role in extending the lifetime of a resource constrained WSN. Resource-constrained WSNs rely on collaborative signal and information processing for efficient handling of large volumes of data collected by the sensor nodes. In this dissertation, the problem of collaborative information processing for sequential parameter estimation in a WSN is formulated in a cooperative game-theoretic framework, which addresses the issue of fair resource allocation for estimation task at the Fusion center (FC). The framework allows addressing either resource allocation or commitment for information processing as solutions of cooperative games with underlying theoretical justifications. Different solution concepts found in cooperative games, namely, the Shapley function and Nash bargaining are used to enforce certain kinds of fairness among the nodes in a WSN

    Collaborative sensor network algorithm for predicting the spatiotemporal evolution of hazardous phenomena

    Get PDF
    We present a novel decentralized Wireless Sensor Network (WSN) algorithm which can estimate both the speed and direction of an evolving diffusive hazardous phenomenon (e.g. a wildfire, oil spill, etc.). In the proposed scheme we approximate a progressing hazard’s front as a set of line segments. The spatiotemporal evolution of each line segment is modeled by a modified 2D Gaussian function. As the phenomenon evolves, the parameters of this model are updated based on the analytical solution of a Kullback – Leibler (KL) divergence minimization problem. This leads to an efficient WSN distributed parameters estimation algorithm that can be implemented by dynamically formed clusters (triplets) of collaborating sensor nodes. Computer simulations show that our approach is able to track the evolving phenomenon with reasonable accuracy even if a percentage of sensors fails due to the hazard and/or the phenomenon has a time varying speed

    Distributed Signal Processing and Data Fusion Methods for Large Scale Wireless Sensor Network Applications

    Get PDF
    Σε αυτή τη Διδακτορική Διατριβή μελετάμε το πρόβλημα της παρακολούθησης και πρόβλεψης της εξέλιξης συνεχών αντικειμένων (π.χ. καταστροφικά περιβαλλοντικά φαινόμενα που διαχέονται) με τη χρήση Ασυρμάτων Δικτύων Αισθητήρων (ΑΔΑ) ευρείας κλίμακας. Προτείνουμε μια ευέλικτη αλλά και πρακτική προσέγγιση με δύο κύρια συστατικά: α) Ασύγχρονο συνεργατικό αλγόριθμο ΑΔΑ που εκτιμά, χρησιμοποιώντας δυναμικά σχηματιζόμενες ομάδες από τρεις συνεργαζόμενους κόμβους, τα τοπικά χαρακτηριστικά της εξέλιξης (διεύθυνση, φορά και ταχύτητα) του μετώπου, καθώς και β) Αλγόριθμο που ανακατασκευάζει το συνολικό μέτωπο του συνεχούς αντικειμένου συνδυάζοντας την πληροφορία των τοπικών εκτιμήσεων. Επιπλέον, ο αλγόριθμος ανακατασκευής, εκμεταλλευόμενος την δυνατότητα εκτίμησης της αβεβαιότητα ως προς τα τοπικά χαρακτηριστικά εξέλιξης, μπορεί να προβλέπει και την πιθανότητα το κάθε σημείο της περιοχής να έχει καλυφθεί από το συνεχές αντικείμενο σε κάθε χρονική στιγμή. Μέσω πλήθους προσομοιώσεων επικυρώσαμε την ικανότητα του συνεργατικού αλγορίθμου να εκτιμά με ακρίβεια τα τοπικά χαρακτηριστικά εξέλιξης πολύπλοκων συνεχών αντικειμένων, καθώς και την ευρωστία του σε αστοχίες των αισθητηρίων κόμβων κατά την επικοινωνία τους αλλά και λόγω της πιθανής ολοσχερούς καταστροφής τους. Τέλος, παρουσιάζουμε τη δυνατότητα του αλγορίθμου ανακατασκευής να παρακολουθεί με ακρίβεια την εξέλιξη μετώπων συνεχών αντικειμένων με πολύπλοκα σχήματα, χρησιμοποιώντας σχετικά μικρό αριθμό τοπικών εκτιμήσεων στις οποίες μπορεί να έχει υπεισέλθει και σημαντικό σφάλμα.In this Dissertation we study the problem of tracking the boundary of a continuous object (e.g. a hazardous diffusive phenomenon) and predicting its local and global spatio-temporal evolution characteristics using large-scale Wireless Sensor Networks (WSNs). We introduce a practical WSN-based approach consisting of two main components: a) An asynchronous collaborative in-network processing algorithm that estimates, using dynamically formed node triplets (clusters), local front model evolution parameters (orientation, direction and speed) of the expanding continuous object, and b) an algorithm that reconstruct the overall hazard's boundary by combining the produced local front estimates as they are becoming available to a fusion center. Based on the estimated uncertainties of local front model parameters, the reconstruction can provide for each point of the considered area the probability to be reached by the hazard’s front. Extensive computer simulations demonstrate that the proposed algorithm can estimate accurately the evolution characteristics of complex diffusive continuous objects, while it remains robust to sensor node and communication link failures. Finally, we show that it can track with accuracy the evolution of continuous objects with complex shapes, using a relatively small number of potentially distorted local front estimates

    Μέθοδοι κατανεμημένης επεξεργασίας σήματος και σύντηξης δεδομένων για εφαρμογές ασυρμάτων δικτύων αισθητήρων ευρείας κλίμακας

    Get PDF
    Σε αυτή τη Διδακτορική Διατριβή μελετάμε το πρόβλημα της παρακολούθησης και πρόβλεψης της εξέλιξης συνεχών αντικειμένων (π.χ. καταστροφικά περιβαλλοντικά φαινόμενα που διαχέονται) με τη χρήση Ασυρμάτων Δικτύων Αισθητήρων (ΑΔΑ) ευρείας κλίμακας. Προτείνουμε μια ευέλικτη αλλά και πρακτική προσέγγιση με δύο κύρια συστατικά: α) Ασύγχρονο συνεργατικό αλγόριθμο ΑΔΑ που εκτιμά, χρησιμοποιώντας δυναμικά σχηματιζόμενες ομάδες από τρεις συνεργαζόμενους κόμβους, τα τοπικά χαρακτηριστικά της εξέλιξης (διεύθυνση, φορά και ταχύτητα) του μετώπου, καθώς και β) Αλγόριθμο που ανακατασκευάζει το συνολικό μέτωπο του συνεχούς αντικειμένου συνδυάζοντας την πληροφορία των τοπικών εκτιμήσεων. Επιπλέον, ο αλγόριθμος ανακατασκευής, εκμεταλλευόμενος την δυνατότητα εκτίμησης της αβεβαιότητα ως προς τα τοπικά χαρακτηριστικά εξέλιξης, μπορεί να προβλέπει και την πιθανότητα το κάθε σημείο της περιοχής να έχει καλυφθεί από το συνεχές αντικείμενο σε κάθε χρονική στιγμή. Μέσω πλήθους προσομοιώσεων επικυρώσαμε την ικανότητα του συνεργατικού αλγορίθμου να εκτιμά με ακρίβεια τα τοπικά χαρακτηριστικά εξέλιξης πολύπλοκων συνεχών αντικειμένων, καθώς και την ευρωστία του σε αστοχίες των αισθητηρίων κόμβων κατά την επικοινωνία τους αλλά και λόγω της πιθανής ολοσχερούς καταστροφής τους. Τέλος, παρουσιάζουμε τη δυνατότητα του αλγορίθμου ανακατασκευής να παρακολουθεί με ακρίβεια την εξέλιξη μετώπων συνεχών αντικειμένων με πολύπλοκα σχήματα, χρησιμοποιώντας σχετικά μικρό αριθμό τοπικών εκτιμήσεων στις οποίες μπορεί να έχει υπεισέλθει και σημαντικό σφάλμα. In this Dissertation we study the problem of tracking the boundary of a continuous object (e.g. a hazardous diffusive phenomenon) and predicting its local and global spatio-temporal evolution characteristics using large-scale Wireless Sensor Networks (WSNs). We introduce a practical WSN-based approach consisting of two main components: a) An asynchronous collaborative in-network processing algorithm that estimates, using dynamically formed node triplets (clusters), local front model evolution parameters (orientation, direction and speed) of the expanding continuous object, and b) an algorithm that reconstruct the overall hazard's boundary by combining the produced local front estimates as they are becoming available to a fusion center. Based on the estimated uncertainties of local front model parameters, the reconstruction can provide for each point of the considered area the probability to be reached by the hazard’s front. Extensive computer simulations demonstrate that the proposed algorithm can estimate accurately the evolution characteristics of complex diffusive continuous objects, while it remains robust to sensor node and communication link failures. Finally, we show that it can track with accuracy the evolution of continuous objects with complex shapes, using a relatively small number of potentially distorted local front estimates

    Distributed detection, localization, and estimation in time-critical wireless sensor networks

    Get PDF
    In this thesis the problem of distributed detection, localization, and estimation (DDLE) of a stationary target in a fusion center (FC) based wireless sensor network (WSN) is considered. The communication process is subject to time-critical operation, restricted power and bandwidth (BW) resources operating over a shared communication channel Buffering from Rayleigh fading and phase noise. A novel algorithm is proposed to solve the DDLE problem consisting of two dependent stages: distributed detection and distributed estimation. The WSN performs distributed detection first and based on the global detection decision the distributed estimation stage is performed. The communication between the SNs and the FC occurs over a shared channel via a slotted Aloha MAC protocol to conserve BW. In distributed detection, hard decision fusion is adopted, using the counting rule (CR), and sensor censoring in order to save power and BW. The effect of Rayleigh fading on distributed detection is also considered and accounted for by using distributed diversity combining techniques where the diversity combining is among the sensor nodes (SNs) in lieu of having the processing done at the FC. Two distributed techniques are proposed: the distributed maximum ratio combining (dMRC) and the distributed Equal Gain Combining (dEGC). Both techniques show superior detection performance when compared to conventional diversity combining procedures that take place at the FC. In distributed estimation, the segmented distributed localization and estimation (SDLE) framework is proposed. The SDLE enables efficient power and BW processing. The SOLE hinges on the idea of introducing intermediate parameters that are estimated locally by the SNs and transmitted to the FC instead of the actual measurements. This concept decouples the main problem into a simpler set of local estimation problems solved at the SNs and a global estimation problem solved at the FC. Two algorithms are proposed for solving the local problem: a nonlinear least squares (NLS) algorithm using the variable projection (VP) method and a simpler gird search (GS) method. Also, Four algorithms are proposed to solve the global problem: NLS, GS, hyperspherical intersection method (HSI), and robust hyperspherical intersection (RHSI) method. Thus, the SDLE can be solved through local and global algorithm combinations. Five combinations are tied: NLS2 (NLS-NLS), NLS-HSI, NLS-RHSI, GS2, and GS-N LS. It turns out that the last algorithm combination delivers the best localization and estimation performance. In fact , the target can be localized with less than one meter error. The SNs send their local estimates to the FC over a shared channel using the slotted-Aloha MAC protocol, which suits WSNs since it requires only one channel. However, Aloha is known for its relatively high medium access or contention delay given the medium access probability is poorly chosen. This fact significantly hinders the time-critical operation of the system. Hence, multi-packet reception (MPR) is used with slotted Aloha protocol, in which several channels are used for contention. The contention delay is analyzed for slotted Aloha with and without MPR. More specifically, the mean and variance have been analytically computed and the contention delay distribution is approximated. Having theoretical expressions for the contention delay statistics enables optimizing both the medium access probability and the number of MPR channels in order to strike a trade-off between delay performance and complexity

    Likelihood Consensus and Its Application to Distributed Particle Filtering

    Full text link
    We consider distributed state estimation in a wireless sensor network without a fusion center. Each sensor performs a global estimation task---based on the past and current measurements of all sensors---using only local processing and local communications with its neighbors. In this estimation task, the joint (all-sensors) likelihood function (JLF) plays a central role as it epitomizes the measurements of all sensors. We propose a distributed method for computing, at each sensor, an approximation of the JLF by means of consensus algorithms. This "likelihood consensus" method is applicable if the local likelihood functions of the various sensors (viewed as conditional probability density functions of the local measurements) belong to the exponential family of distributions. We then use the likelihood consensus method to implement a distributed particle filter and a distributed Gaussian particle filter. Each sensor runs a local particle filter, or a local Gaussian particle filter, that computes a global state estimate. The weight update in each local (Gaussian) particle filter employs the JLF, which is obtained through the likelihood consensus scheme. For the distributed Gaussian particle filter, the number of particles can be significantly reduced by means of an additional consensus scheme. Simulation results are presented to assess the performance of the proposed distributed particle filters for a multiple target tracking problem

    Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    Get PDF
    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms
    corecore