3,793 research outputs found

    Quotient Complexities of Atoms in Regular Ideal Languages

    Get PDF
    A (left) quotient of a language LL by a word ww is the language w−1L={x∣wx∈L}w^{-1}L=\{x\mid wx\in L\}. The quotient complexity of a regular language LL is the number of quotients of LL; it is equal to the state complexity of LL, which is the number of states in a minimal deterministic finite automaton accepting LL. An atom of LL is an equivalence class of the relation in which two words are equivalent if for each quotient, they either are both in the quotient or both not in it; hence it is a non-empty intersection of complemented and uncomplemented quotients of LL. A right (respectively, left and two-sided) ideal is a language LL over an alphabet Σ\Sigma that satisfies L=LΣ∗L=L\Sigma^* (respectively, L=Σ∗LL=\Sigma^*L and L=Σ∗LΣ∗L=\Sigma^*L\Sigma^*). We compute the maximal number of atoms and the maximal quotient complexities of atoms of right, left and two-sided regular ideals.Comment: 17 pages, 4 figures, two table

    Families of locally separated Hamilton paths

    Get PDF
    We improve by an exponential factor the lower bound of K¨orner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound was obtained by a greedy algorithm. We solve a similar problem for permutations up to an exponential factor

    Families of locally separated Hamilton paths

    Get PDF
    We improve by an exponential factor the lower bound of K¨orner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound was obtained by a greedy algorithm. We solve a similar problem for permutations up to an exponential factor

    Signal Propagation, with Application to a Lower Bound on the Depth of Noisy Formulas

    Get PDF
    We study the decay of an information signal propagating through a series of noisy channels. We obtain exact bounds on such decay, and as a result provide a new lower bound on the depth of formulas with noisy components. This improves upon previous work of N. Pippenger and significantly decreases the gap between his lower bound and the classical upper bound of von Neumann. We also discuss connections between our work and the study of mixing rates of Markov chains
    • …
    corecore