1,334 research outputs found

    On the Relationship between Transmission Power and Capacity of an Underwater Acoustic Communication Channel

    Full text link
    The underwater acoustic channel is characterized by a path loss that depends not only on the transmission distance, but also on the signal frequency. As a consequence, transmission bandwidth depends on the transmission distance, a feature that distinguishes an underwater acoustic system from a terrestrial radio system. The exact relationship between power, transmission band, distance and capacity for the Gaussian noise scenario is a complicated one. This work provides a closed-form approximate model for 1) power consumption, 2) band-edge frequency and 3) bandwidth as functions of distance and capacity required for a data link. This approximate model is obtained by numerical evaluation of analytical results which takes into account physical models of acoustic propagation loss and ambient noise. The closed-form approximations may become useful tools in the design and analysis of underwater acoustic networks.Comment: 6 pages, 9 Figures, Awaiting acceptance to IEEE Oceans 08 (Conference), Kobe, Japa

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    A Parametric Replay-Based Framework for Underwater Acoustic Communication Channel Simulation

    No full text
    International audienceThis paper lays the foundation of an underwater acoustic channel simulation methodology that is halfway between parametric modeling and stochastic replay of at-sea measurements of channel impulse responses. The motivation behind this approach is to extend the scope of use of replay-based methods by allowing some parameterization of the channel properties while complying with some level of realism. Based on a relative entropy minimization between the original channel impulse response and the simulated one, the idea is to deliberately distort the original channel statistics in order to meet some specified constraints

    Analysis of and techniques for adaptive equalization for underwater acoustic communication

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011Underwater wireless communication is quickly becoming a necessity for applications in ocean science, defense, and homeland security. Acoustics remains the only practical means of accomplishing long-range communication in the ocean. The acoustic communication channel is fraught with difficulties including limited available bandwidth, long delay-spread, time-variability, and Doppler spreading. These difficulties reduce the reliability of the communication system and make high data-rate communication challenging. Adaptive decision feedback equalization is a common method to compensate for distortions introduced by the underwater acoustic channel. Limited work has been done thus far to introduce the physics of the underwater channel into improving and better understanding the operation of a decision feedback equalizer. This thesis examines how to use physical models to improve the reliability and reduce the computational complexity of the decision feedback equalizer. The specific topics covered by this work are: how to handle channel estimation errors for the time varying channel, how to use angular constraints imposed by the environment into an array receiver, what happens when there is a mismatch between the true channel order and the estimated channel order, and why there is a performance difference between the direct adaptation and channel estimation based methods for computing the equalizer coefficients. For each of these topics, algorithms are provided that help create a more robust equalizer with lower computational complexity for the underwater channel.This work would not have been possible without support from the O ce of Naval Research, through a Special Research Award in Acoustics Graduate Fellowship (ONR Grant #N00014-09-1-0540), with additional support from ONR Grant #N00014-05- 10085 and ONR Grant #N00014-07-10184

    The Widely scalable Mobile Underwater Sonar Technology (WiMUST) H2020 project: first year status

    Get PDF
    The Widely scalable Mobile Underwater Sonar Technology (WiMUST) project aims at developing a system of cooperative Autonomous Underwater Vehicles (AUVs) for geotechnical surveying and geophysical exploration. The paper reports about the first year activities and it gives an overview of the main objectives and methods. Results relative to distributed sensor array, cooperative control, mission planning, communications and preliminary experiments are summarized
    • …
    corecore