29,727 research outputs found

    Electronics and control technology

    Get PDF
    Until recently, there was no requirement to learn electronics and control technology in the New Zealand school curriculum. Apart from isolated pockets of teaching based on the enthusiasm of individual teachers, there is very little direct learning of electronics in New Zealand primary or secondary schools. The learning of electronics is located in tertiary vocational training programmes. Thus, few school students learn about electronics and few school teachers have experience in teaching it. Lack of experience with electronics (other than using its products) has contributed to a commonly held view of electronics as out of the control and intellectual grasp of the average person; the domain of the engineer, programmer and enthusiast with his or her special aptitude. This need not be true, but teachers' and parents' lack of experience with electronics is in danger of denying young learners access to the mainstream of modern technology

    [Subject benchmark statement]: computing

    Get PDF

    CPLD based controller for single phase inverters

    Get PDF
    The DC-AC converter, also known as inverter, converts DC power to AC power at desired output voltage and frequency. The DC power input to the inverter is obtained from an existing power supply. Nowadays inverters use high power switching transistors either IGBT's and/or MOSFETs. In addition, the voltage and frequency of the source can be adjustable. These single phase inverters and their operating principles are analyzed in detail. In this project, a full-bridge, single phase inverter that uses a digital Pulse Width Modulation (PWM) to control the power switches at 18 kHz was constructed. The concept of PWM with different strategies for inverters is described. A type of filter is used to improve the distortion in the output waveform. A design and implementation of PWM by using complex programmable logic device (CPLD) from Altera MaxPlus II is constructed and programmed. The involved software, hardware, and suitable algorithm to implement and generate the PWM are developed in details. To verify the significant of this single phase inverter, the output voltage will be tested with resistive load and inductive load

    Integration of virtual reality within the built environment curriculum

    Get PDF
    Virtual Reality (VR) technology is still perceived by many as being inaccessible and cost prohibitive with VR applications considered expensive to develop as well as challenging to operate. This paper reflects on current developments in VR technologies and describes an approach adopted for its phased integration into the academic curriculum of built environment students. The process and end results of implementing the integration are discussed and the paper illustrates the challenges of introducing VR, including the acceptance of the technology by academic staff and students, interest from industry, and issues pertaining to model development. It sets out to show that fairly sophisticated VR models can now be created by non-VR specialists using commercially available software and advocates that the implementation of VR will increase alongside industryis adoption of these tools and the emergence of a new generation of students with VR skills. The study shows that current VR technologies, if integrated appropriately within built environment academic programmes, demonstrate clear promise to provide a foundation for more widespread collaborative working environments

    Principles in Patterns (PiP) : Project Evaluation Synthesis

    Get PDF
    Evaluation activity found the technology-supported approach to curriculum design and approval developed by PiP to demonstrate high levels of user acceptance, promote improvements to the quality of curriculum designs, render more transparent and efficient aspects of the curriculum approval and quality monitoring process, demonstrate process efficacy and resolve a number of chronic information management difficulties which pervaded the previous state. The creation of a central repository of curriculum designs as the basis for their management as "knowledge assets", thus facilitating re-use and sharing of designs and exposure of tacit curriculum design practice, was also found to be highly advantageous. However, further process improvements remain possible and evidence of system resistance was found in some stakeholder groups. Recommendations arising from the findings and conclusions include the need to improve data collection surrounding the curriculum approval process so that the process and human impact of C-CAP can be monitored and observed. Strategies for improving C-CAP acceptance among the "late majority", the need for C-CAP best practice guidance, and suggested protocols on the knowledge management of curriculum designs are proposed. Opportunities for further process improvements in institutional curriculum approval, including a re-engineering of post-faculty approval processes, are also recommended

    Technology, open education and a resilient higher education

    Get PDF
    The place of technology in the development of coherent educational responses to environmental and socio-economic= disruption is here placed under scrutiny. One emerging area of interest is the role of technology in addressing more complex learning futures, and more especially in facilitating individual and social resilience, or the ability to manage and overcome disruption. However, the extent to which higher education practitioners can utilise technology to this end is framed by their approaches to the curriculum, and the socio-cultural practices within which they are located. This paper discusses how open education might enable learners to engage with uncertainty through social action within a form of higher education that is more resilient to economic, environmental and energy-related disruption. It asks whether open higher education can be (re)claimed by users and communities within specific contexts and curricula, in order to engage with an uncertain world

    Principles in Patterns (PiP) : Institutional Approaches to Curriculum Design Institutional Story

    Get PDF
    The principal outputs of the PiP Project surround the Course and Class Approval (C-CAP) system. This web-based system built on Microsoft SharePoint addresses and resolves many of the issues identified by the project. Generally well received by both academic and support staff, the system provides personalised views, adaptive forms and contextualised support for all phases of the approval process. Although the system deliberately encapsulates and facilitates existing approval processes thus achieving buy-in, it is already achieving significant improvements over the previous processes, not only in reducing the administrative overheads but also in supporting curriculum design and academic quality. The system is now embedded across three faculties and is now considered by the University of Strathclyde to be a "core institutional service". Alongside the C-CAP system the PiP Project also cultivated a suite of approaches: an incremental systems development methodology; a structured and replicable evaluation approach, and; Strathclyde's Lean Approach to Efficiencies in Education Kit (SLEEK) business process improvement methodology Each is based on recognised formal techniques, providing the basis for a rigorous approach. This is contextualised within and adapted to the HE institutional context thus building the foundation not only for the project but ultimately for institution wide process improvement. This "institutional story" report summarises the principal outcomes of the Project
    corecore