66,487 research outputs found

    Information systems architecture for fire emergency response

    Get PDF
    Purpose There has been a lack of meaningful information systems architecture, which comprehensively conceptualise the essential components and functionality of an information system for fire emergency response addressing needs of different job roles. This study proposes a comprehensive information systems architecture which would best support four of the key fire-fighter job roles. Design The study has built on the outcomes of two previous preliminary studies on information and human-computer interaction needs of core fire fighter job roles. Scenario based action research was conducted with fire fighters in a range of roles, to evaluate human computer interaction needs while using various technology platforms. Findings Several key themes were identified and led us to propose several layers of an integrated architecture, their composition and interactions. Research limitations The selected fire scenarios may not represent every type of fire expected in high risk built environments. Practical implications The current paper represents a shared discussion among end users, system architects and designers, to understand and improve essential components. It, therefore, provides a reference point for the development of an information system architecture for fire emergency response. Originality The proposed information system architecture is novel because it outlines specific architectural elements required to meet the specific situation awareness needs of four of the key firefighters job roles

    Geographic reasoning on multi-modal fire spread data

    Get PDF
    This paper presents the general architecture of a multi-sensor GIS platform, i.e., fireGIS, which serves as a guideline for effective use of sensor data and geographic information in systems for fire incident management. The proposed platform allows the generation of real-time heatmaps that show the space-time distribution of fire risk levels across an area of concern based on multi-modal sensing. Such levels are to assist the decision makers in taking actions and aims at facilitating quick fire emergency response. Results of real fire experiments in a large-scale road tunnel show the feasibility of our approach

    Ubiquitous Interoperable Emergency Response System

    Get PDF
    In the United States, there is an emergency dispatch for fire department services more than once every second - 31,854,000 incidents in 2012. While large scale disasters present enormous response complexity, even the most common emergencies require a better way to communicate information between personnel. Through real-time location and status updates using integrated sensors, this system can significantly decrease emergency response times and improve the overall effectiveness of emergency responses. Aside from face-to-face communication, radio transmissions are the most common medium for transferring information during emergency incidents. However, this type of information sharing is riddled with issues that are nearly impossible to overcome on a scene. Poor sound quality, the failure to hear transmissions, the inability to reach a radio microphone, and the transient nature of radio messages illustrate just a few of the problems. Proprietary and closed systems that collect and present response data have been implemented, but lack interoperability and do not provide a full array of necessary services. Furthermore, the software and hardware that run the systems are generally poorly designed for emergency response scenarios. Pervasive devices, which can transmit data without human interaction, and software using open communication standards designed for multiple platforms and form factors are two essential components. This thesis explores the issues, history, design, and implementation of a ubiquitous interoperable emergency response system by taking advantage of the latest in hardware and software, including Google Glass, Android powered mobile devices, and a cloud based architecture that can automatically scale to 7 billion requests per day. Implementing this pervasive system that transcends physical barriers by allowing disparate devices to communicate and operate harmoniously without human interaction is a step towards a practical solution for emergency response management

    Information Systems for Supporting Fire Emergency Response

    Get PDF
    Despite recent work on information systems, many first responders in emergency situations are unable to develop sufficient understanding of the situation to enable them to make good decisions. The record of the UK Fire and Rescue Service (FRS) has been particularly poor in terms of providing the information systems support to the fire fighters decision-making during their work. There is very little work on identifying the specific information needs of different types of fire fighters. Consequently, this study has two main aims. The first is to identify the information requirements of several specific members of the FRS hierarchy that lead to better Situation Awareness. The second is to identify how such information should be presented. This study was based on extensive data collected in the FRS brigades of three counties and focused on large buildings having a high-risk of fire and four key fire fighter job roles: Incident Commander, Sector Commander, Breathing Apparatus Entry Control Officer and Breathing Apparatus Wearers. The requirements elicitation process was guided by a Cognitive Task Analysis (CTA) tool: Goal Directed Information Analysis (GDIA), which was developed specifically for this study. Initially appropriate scenarios were developed. Based on the scenarios, 44 semi-structured interviews were carried out in three different elicitation phases with both novice and experienced fire fighters. Together with field observations of fire simulation and training exercises, fire and rescue related documentation; a comprehensive set of information needs of fire fighters was identified. These were validated through two different stages via 34 brainstorming sessions with the participation of a number of subject-matter experts. To explore appropriate presentation methods of information, software mock-up was developed. This mock-up is made up of several human computer interfaces, which were evaluated via 19 walkthrough and workshop sessions, involving 22 potential end-users and 14 other related experts. As a result, many of the methods used in the mock-up were confirmed as useful and appropriate and several refinements proposed. The outcomes of this study include: 1) A set of GDI Diagrams showing goal related information needs for each of the job roles with the link to their decision-making needs, 2) A series of practical recommendations suitable for designing of human computer interfaces of fire emergency response information system, 3) Human computer interface mock-ups for an information system to enhance Situation Awareness of fire fighters and 4) A conceptual architecture for the underlying information system. In addition, this study also developed an enhanced cognitive task analysis tool capable of exploring the needs of emergency first responders. This thesis contributes to our understanding of how information systems could be designed to enhance the Situation Awareness of first responders in a fire emergency. These results will be of particular interest to practicing information systems designers and developers in the FRS in the UK and to the wider academic community

    Designing Malleable Cyberinfastructure to Breach the Golden Barrier

    Get PDF
    Design research perspectives may have a great deal of insights to offer emergency response researchers. We consider man-made and natural disasters as events that often require rapid change to existing institutionalized technical, social, and cultural support structure—a fundamental problem for static systems. Built infrastructure such as electric power and telecommunications or emergency response systems such as fire, police, and National Guard all have static information systems that are tailored to their specific needs. These specialized systems are typical of those developed as a result of applying traditional information systems design theory. They are designed to control domain specific variables and mitigate a specific class of constraints derived from a wellarticulated environment with firm application boundaries. Therefore, typical mission-critical Information and Communication Infrastructure (ICTI) technologies empower knowledge workers with the ability to change current environmental events to ensure safety and security. Disasters create situations that are challenging for typical designs because a disaster erodes control and raises unexpected constraints during an emerging set of circumstances. The unpredictable circumstances of disasters demonstrate that current emergency response ICTI systems are ill equipped to rapidly evolve in concert to address the full scale and scope of such complex problems. A phenomenon found in the treatment of trauma victims, the Golden Trauma Time Interval, is generalized in this paper to all emergencies in order to inform designers of the next generation ICTI. This future ICTI or “Cyberinfrastructure” can provide the essential foundation necessary to dynamically adapt conventional ICTI into a configuration suitable for use during disasters. However, Cyberinfrastructure will suffice only if it can be sufficiently evolved as an Integrated Information Infrastructure (I3 ) that addresses the common sociotechnical factors in these domains. This paper describes fundamental design concepts derived from interdisciplinary theoretical constructs used to inform the creation of a framework to model “complex adaptive systems” (CAS) of which emergency response infrastructural systems and I3 are instances. In previous work, CAS was synthesized with software architecture concepts to arrive at a design approach for the electric power grid’s I3. We will present some of the foundational concepts of CAS that are useful for the future design and development of a Cyberinfrastructure. The ICTI may exist today in a raw form to accomplish the task, but further ICTI design research is required to pinpoint critical inhibitors to its evolution. Also, social, organizational, and institutional issues pertaining to this research will be highlighted as emergency response system design factors needing further consideration. For example, this discussion infers a resolution to the basic tradeoff between personal privacy rights and public safety

    The assessment of information technology maturity in emergency response organizations

    Full text link
    [EN] In emergency response organizations, information technologies are not adequately explored. Sometimes, the mere adoption of new information technologies is not productive, as their efficient use depends on other interrelated technologies and the environment where they are installed. This work describes a model to help organizations understand their capability in respect to the adoption of these technologies. The model also helps the performing of the evaluation from different perspectives, making it suitable to collaborative evaluation. Using the proposed model, an organization can measure its maturity level in different aspects of the evaluation and guide the investment on its capabilities. Part of the model has been developed for emergency response organizations and the information technology dimension of the model has been applied to two fire department installations.Marcos R. S. Borges was partially supported by grants No. 560223/2010-2 and 480461/2009-0 from CNPq (Brazil). Work of José H. Canós is partially funded by the Spanish Ministerio. de Educación y Ciencia (MEC) under grant TIPEX (TIN2010–19859-C03-03). The cooperation between the Brazilian and the Spanish research groups was partially sponsored by the CAPES/MECD Cooperation Program, Project #169/ PHB2007-0064-PC.Santos, RS.; Borges, MRS.; Canos Cerda, JH.; Gomes, JO. (2011). The assessment of information technology maturity in emergency response organizations. Group Decision and Negotiation. 20(5):593-613. doi:10.1007/s10726-011-9232-zS593613205Bigley G, Roberts KH (2001) The incident command system: high reliability organizing for complex and volatile task environments. Acad Manag J 44(6): 1281–1299Chinowsky P, Molenaar K, Realph A (2007) Learning organizations in construction. J Manag Eng 23(1): 27–34Diniz VB, Borges MRS, Gomes JO, Canós JH (2008) Decision making support in emergency response. In: Encyclopedia of decision making, Information Science Reference (an imprint of IGI Global), New York, pp 184–191Dörner R, Grimm P, Seiler C (2001) ETOILE—an environment for team, organizational and individual learning. CG Top 13(3): 5–6Dykstra E (2003) Concept paper: toward an international system model in emergency management. In: Proceedings of toward an international system model in emergency management, Public Entity Risk InstituteFederal Emergency Management Agency (FEMA) (1998) Emergency management guide for business and industry: a step-by-step approach to emergency planning, response and recovery for companies of all sizesGu Q, Mendonça D (2005) Patterns of group information seeking in a simulated emergency response environment. In: Proceedings of the 2nd international ISCRAM conference, Brussels, BelgiumHale J (1997) A layered communication architecture for the support of crisis response. J Manag Inf Syst 14(1): 235–255King W, Teo T (1997) Integration between business planning and information systems planning: validating a stage hypothesis. Decis Sci 28(2): 279–307Lachner J, Hellwagner H (2008) Information and communication systems for mobile emergency response. Lecture notes in business information processing, vol 5. pp 213–224Lavoie D, Culbert A (1978) Stages in organization and development. Human Relat 31(5): 417–438Lindel MK, Prater C, Perry RW (2007) Emergency management. Wiley, New YorkLlavador M, Letelier P, Penadés MC, Borges MRS, Solís C (2006) Precise yet flexible specification of emergency resolution procedures. In: Proceedings of the information systems for crisis response and management (ISCRAM), pp 110–120Meissner A, Wang Z, Putz W, Grimmer J (2006) MIKoBOS: a mobile information and communication system for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New JerseyNonaka I, Takeuchi H (1995) The knowledge creating company: how Japanese companies create the dynamics of innovation. Oxford University Press, OxfordOchoa S, Neyem A, Pino JA, Borges MRS (2007) Supporting group decision making and coordination in urban disasters relief efforts. J Decis Syst 16(2): 143–172Paton D, Flin R (1999) Disaster stress: an emergency management perspective. Disaster Prev Manag 8(4): 261–267Paulk MC, Weber C, Curtis B, Chrissis M (1995) The capability maturity model: guidelines for improving the software process. Addison-Wesley, ReadingQuarantelli EL (1997) Problematical aspects of the information/communication revolution for disaster planning and research: ten non-technical issues and questions. Disaster Prev Manag 6(2): 94–106Santos RS, Borges MRS, Gomes JO, Canós JH (2008) Maturity levels of information technologies in emergency response organizations. In: Proceedings of the international workshop on groupware, Omaha, Nebraska, USA. Groupware: design, implementation and use. Lecture notes in computer science, vol 5411. Springer, Berlin, pp 135–150Schoenharl T, Szabo G, Madey G, Barabasi AL (2006) WIPER: a multi-agent system for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New JerseyTuroff M (2002) Past and future emergency response information systems. Commun ACM 45(4): 29–33Turoff M, Chumer M, Hiltz R, Clasher R, Alles M, Vasarhelyi M, Kogan A (2004a) Assuring homeland security: continuous monitoring, control and assurance of emergency preparedness. J Inf Technol Theor Appl (JITTA) 6(3): 1–24Turoff M, Chumer M, Vande Walle B, Yao X (2004b) The design of a dynamic emergency response management information system (DERMIS). J Inf Technol Theor Appl (JITTA) 5(4): 1–35Van der Lee MDE, Van Vugt M (2004) IMI—An information system for effective multidisciplinary incident management. In: Proceedings of the 1st international ISCRAM conference, Brussels, BelgiumYuan Y, Deltor B (2005) Intelligent mobile crisis response systems. Commun ACM 28(2): 95–98Zimmerman R, Restrepo CE (2006) Information technology (IT) and critical infrastructure interdependencies for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New Jerse

    Architecture of Environmental Risk Modelling: for a faster and more robust response to natural disasters

    Full text link
    Demands on the disaster response capacity of the European Union are likely to increase, as the impacts of disasters continue to grow both in size and frequency. This has resulted in intensive research on issues concerning spatially-explicit information and modelling and their multiple sources of uncertainty. Geospatial support is one of the forms of assistance frequently required by emergency response centres along with hazard forecast and event management assessment. Robust modelling of natural hazards requires dynamic simulations under an array of multiple inputs from different sources. Uncertainty is associated with meteorological forecast and calibration of the model parameters. Software uncertainty also derives from the data transformation models (D-TM) needed for predicting hazard behaviour and its consequences. On the other hand, social contributions have recently been recognized as valuable in raw-data collection and mapping efforts traditionally dominated by professional organizations. Here an architecture overview is proposed for adaptive and robust modelling of natural hazards, following the Semantic Array Programming paradigm to also include the distributed array of social contributors called Citizen Sensor in a semantically-enhanced strategy for D-TM modelling. The modelling architecture proposes a multicriteria approach for assessing the array of potential impacts with qualitative rapid assessment methods based on a Partial Open Loop Feedback Control (POLFC) schema and complementing more traditional and accurate a-posteriori assessment. We discuss the computational aspect of environmental risk modelling using array-based parallel paradigms on High Performance Computing (HPC) platforms, in order for the implications of urgency to be introduced into the systems (Urgent-HPC).Comment: 12 pages, 1 figure, 1 text box, presented at the 3rd Conference of Computational Interdisciplinary Sciences (CCIS 2014), Asuncion, Paragua

    Information Systems for Supporting Fire Emergency Response

    Get PDF
    Despite recent work on information systems, many first responders in emergency situations are unable to develop sufficient understanding of the situation to enable them to make good decisions. The record of the UK Fire and Rescue Service (FRS) has been particularly poor in terms of providing the information systems support to the fire fighters decision-making during their work. There is very little work on identifying the specific information needs of different types of fire fighters. Consequently, this study has two main aims. The first is to identify the information requirements of several specific members of the FRS hierarchy that lead to better Situation Awareness. The second is to identify how such information should be presented. This study was based on extensive data collected in the FRS brigades of three counties and focused on large buildings having a high-risk of fire and four key fire fighter job roles: Incident Commander, Sector Commander, Breathing Apparatus Entry Control Officer and Breathing Apparatus Wearers. The requirements elicitation process was guided by a Cognitive Task Analysis (CTA) tool: Goal Directed Information Analysis (GDIA), which was developed specifically for this study. Initially appropriate scenarios were developed. Based on the scenarios, 44 semi-structured interviews were carried out in three different elicitation phases with both novice and experienced fire fighters. Together with field observations of fire simulation and training exercises, fire and rescue related documentation; a comprehensive set of information needs of fire fighters was identified. These were validated through two different stages via 34 brainstorming sessions with the participation of a number of subject-matter experts. To explore appropriate presentation methods of information, software mock-up was developed. This mock-up is made up of several human computer interfaces, which were evaluated via 19 walkthrough and workshop sessions, involving 22 potential end-users and 14 other related experts. As a result, many of the methods used in the mock-up were confirmed as useful and appropriate and several refinements proposed. The outcomes of this study include: 1) A set of GDI Diagrams showing goal related information needs for each of the job roles with the link to their decision-making needs, 2) A series of practical recommendations suitable for designing of human computer interfaces of fire emergency response information system, 3) Human computer interface mock-ups for an information system to enhance Situation Awareness of fire fighters and 4) A conceptual architecture for the underlying information system. In addition, this study also developed an enhanced cognitive task analysis tool capable of exploring the needs of emergency first responders. This thesis contributes to our understanding of how information systems could be designed to enhance the Situation Awareness of first responders in a fire emergency. These results will be of particular interest to practicing information systems designers and developers in the FRS in the UK and to the wider academic community.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore