139,581 research outputs found

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Arctic HYCOS – 1st Workshop on Improved Monitoring, Accuracy and Data Availability in the Arctic Drainage Basin: Meeting Summary Report and Implementation Plan

    Get PDF
    The World Hydrological Cycle Observing System (WHYCOS) is a global programme, developed in response to the scarcity or absence of accurate, timely and accessible data and information in real or near real time on freshwater resources in many parts of the world. The programme is implemented through various components (HYCOSs) at the regional and/or basin scale. It is guided by the WHYCOS International Advisory Group (WIAG). The Arctic-HYCOS program is being promoted through this Workshop. For more information on the WHYCOS, please see http://www.whycos.org/cms/. The main goal of the Arctic-HYCOS program is to improve monitoring, data accuracy, availability and dissemination of information in the pan-arctic drainage basin. This project is science-driven and is aimed at monitoring freshwater fluxes and pollutants into the Arctic Ocean with the objective of improving climate predictions in the Northern Hemisphere and assessing the pollution of the Arctic coastal areas and the open Arctic Ocean. Arctic-HYCOS is currently organized along three main activities. 1. Develop and optimal design fro hydro-meteorological monitoring networks to capture the essential variability of the Arctic hydrological system and to enable accurate and efficient assessment of change 2. Estimate uncertainty of available in situ and possible remote sensing data including analysis of accuracy and systematic errors of new observation technology 3. Develop an integrated pan-arctic data consolidation and analysis system for the water cycle uniting data from various in-situ and other sources

    SciTech News Volume 70, No. 4 (2016)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 4 SLA Annual Meeting 2016 Report (S. Kirk Cabeen Travel Stipend Award recipient) 6 Reflections on SLA Annual Meeting (Diane K. Foster International Student Travel Award recipient) 8 SLA Annual Meeting Report (Bonnie Hilditch International Librarian Award recipient)10 Chemistry Division 12 Engineering Division 15 Reflections from the 2016 SLA Conference (SPIE Digital Library Student Travel Stipend recipient)15 Fundamentals of Knowledge Management and Knowledge Services (IEEE Continuing Education Stipend recipient) 17 Makerspaces in Libraries: The Big Table, the Art Studio or Something Else? (by Jeremy Cusker) 19 Aerospace Section of the Engineering Division 21 Reviews Sci-Tech Book News Reviews 22 Advertisements IEEE 17 WeBuyBooks.net 2

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    Monitoring and management of power transmission dynamics in an industrial smart grid

    Get PDF
    This article is a position paper whose purpose is to give the context for presentations in a special session at PowerTech 2013. The special session is being proposed by the EU FP7 Real-Smart Consortium, a Marie Curie Industry-Academic Pathways and Partnerships project. The paper gives an overview of topics on modeling, monitoring and management of power transmission dynamics with participation from large industrial loads. © 2013 IEEE
    • …
    corecore