23,393 research outputs found

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Operator approach to values of stochastic games with varying stage duration

    Get PDF
    We study the links between the values of stochastic games with varying stage duration hh, the corresponding Shapley operators T\bf{T} and T_h{\bf{T}}\_hand the solution of f˙_t=(TId)f_t\dot f\_t = ({\bf{T}} - Id )f\_t. Considering general non expansive maps we establish two kinds of results, under both the discounted or the finite length framework, that apply to the class of "exact" stochastic games. First, for a fixed length or discount factor, the value converges as the stage duration go to 0. Second, the asymptotic behavior of the value as the length goes to infinity, or as the discount factor goes to 0, does not depend on the stage duration. In addition, these properties imply the existence of the value of the finite length or discounted continuous time game (associated to a continuous time jointly controlled Markov process), as the limit of the value of any time discretization with vanishing mesh.Comment: 22 pages, International Journal of Game Theory, Springer Verlag, 201

    Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games

    Get PDF
    Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches
    corecore