887 research outputs found

    Joint block and stream cipher based on a modified skew tent map

    Get PDF
    Image encryption is very different from that of texts due to the bulk data capacity and the high redundancy of images. Thus, traditional methods are difficult to use for image encryption as their pseudo-random sequences have small space. Chaotic cryptography use chaos theory in specific systems working such as computing algorithms to accomplish dissimilar cryptographic tasks in a cryptosystem with a fast throughput. For higher security, encryption is the approach to guard information and prevent its leakage. In this paper, a hybrid encryption scheme that combines both stream and block ciphering algorithms is proposed in order to achieve the required level of security with the minimum encryption time. This scheme is based on an improved mathematical model to cover the defects in the previous discredited model proposed by Masuda. The proposed chaos-based cryptosystem uses the improved Skew Tent Map (STM) RQ-FSTM as a substitution layer. This map is based on a lookup table to overcome various problems, such as the fixed point, the key space restrictions, and the limitation of mapping between plain text and cipher text. It uses the same map as a generator to change the byte position to achieve the required confusion and diffusion effects. This modification improves the security level of the original STM. The robustness of the proposed cryptosystem is proven by the performance and the security analysis, as well as the high encryption speed. Depending on the results of the security analysis the proposed system has a better dynamic key space than previous ones using STM, a double encryption quality and a better security analysis than others in the literature with speed convenience to real-time applications

    Review on Color Image Encryption Algorithm based on Pseudorandom Number Key

    Get PDF
    In secure communication, image encryption schemes transform clear images into unintelligible others. The fundamental techniques used to encrypt a block of pixels are substitution and permutation. In recent years focuses on designing of highly robust encryption schemes (i.e., which provide good confusion and diffusion properties, to ensure desired security factor), either using peculiar pixel shuffling methods, or using innovative digital chaos-based ciphers, or by making justified compositions between these different pixel shuffling and ciphering techniques. Almost some encryption schemes based on permutation had already been found insecure against the cipher text-only and known/chosen-plaintext attacks, due to the high information redundancy, and it is quite understandable since the secret permutations can be recovered by comparing the plaintexts and the permuted cipher texts. Generally, chaos-based image encryption algorithms are used more often than others but require high computational cost. Moreover, a chaos system is defined on real numbers while the cryptosystems are defined on finite sets of integers. Furthermore, spatial domain scrambling has defect that the statistical characteristics of image are not changed after scrambling. Therefore, it is not secure to perform scrambling in spatial domain. The image encryption methods based on frequency domain encrypt/decrypt the images by modifying the image frequencies. One can recover the original plain image exactly via a reverse process

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    Video Encryption Based on Chaotic Systems in the Compression Domain

    Get PDF
    With the development of the internet and multimedia technology digital video encryption has attracted a great deal of research interest in the recent few years in applications. In this paper, we propose a method to encrypt video data. The proposed algorithm is based on the MPEG video coding standard. It selectively encrypts some DCT coefficients in the I frame, B frame and P frame in MPEG video compression by using chaotic systems. The key in this paper is chaotic sequence based on logistic mapping. It can produce the pseudo-random sequences with good randomness. The experimental results based on chaotic maps prove the effectiveness of the proposed method, showing advantages of large key space and high-level security. The proposed algorithm was measured through a series of tests and achieved good results. The results indicate that the algorithm can be implemented for video encryption efficiently and it provides considerable levels of security

    Hybrid chaotic map with L-shaped fractal Tromino for image encryption and decryption

    Get PDF
    Insecure communication in digital image security and image storing are considered as important challenges. Moreover, the existing approaches face problems related to improper security at the time of image encryption and decryption. In this research work, a wavelet environment is obtained by transforming the cover image utilizing integer wavelet transform (IWT) and hybrid discrete cosine transform (DCT) to completely prevent false errors. Then the proposed hybrid chaotic map with L-shaped fractal Tromino offers better security to maintain image secrecy by means of encryption and decryption. The proposed work uses fractal encryption with the combination of L-shaped Tromino theorem for enhancement of information hiding. The regions of L-shaped fractal Tromino are sensitive to variations, thus are embedded in the watermark based on a visual watermarking technique known as reversible watermarking. The experimental results showed that the proposed method obtained peak signal-to-noise ratio (PSNR) value of 56.82dB which is comparatively higher than the existing methods that are, Beddington, free, and Lawton (BFL) map with PSNR value of 8.10 dB, permutation substitution, and Boolean operation with PSNR value of 21.19 dB and deoxyribonucleic acid (DNA) level permutation-based logistic map with PSNR value of 21.27 dB

    A new partial image encryption method for document images using variance based quad tree decomposition

    Get PDF
    The proposed method partially and completely encrypts the gray scale Document images. The complete image encryption is also performed to compare the performance with the existing encryption methods. The partial encryption is carried out by segmenting the image using the Quad-tree decomposition method based on the variance of the image block. The image blocks with uniform pixel levels are considered insignificant blocks and others the significant blocks. The pixels in the significant blocks are permuted by using 1D Skew tent chaotic map. The partially encrypted image blocks are further permuted using 2D Henon map to increase the security level and fed as input to complete encryption. The complete encryption is carried out by diffusing the partially encrypted image. Two levels of diffusion are performed. The first level simply modifies the pixels in the partially encrypted image with the Bernoulli’s chaotic map. The second level establishes the interdependency between rows and columns of the first level diffused image. The experiment is conducted for both partial and complete image encryption on the Document images. The proposed scheme yields better results for both partial and complete encryption on Speed, statistical and dynamical attacks. The results ensure better security when compared to existing encryption schemes
    • …
    corecore