9,804 research outputs found

    Orthogonal Codes for Robust Low-Cost Communication

    Full text link
    Orthogonal coding schemes, known to asymptotically achieve the capacity per unit cost (CPUC) for single-user ergodic memoryless channels with a zero-cost input symbol, are investigated for single-user compound memoryless channels, which exhibit uncertainties in their input-output statistical relationships. A minimax formulation is adopted to attain robustness. First, a class of achievable rates per unit cost (ARPUC) is derived, and its utility is demonstrated through several representative case studies. Second, when the uncertainty set of channel transition statistics satisfies a convexity property, optimization is performed over the class of ARPUC through utilizing results of minimax robustness. The resulting CPUC lower bound indicates the ultimate performance of the orthogonal coding scheme, and coincides with the CPUC under certain restrictive conditions. Finally, still under the convexity property, it is shown that the CPUC can generally be achieved, through utilizing a so-called mixed strategy in which an orthogonal code contains an appropriate composition of different nonzero-cost input symbols.Comment: 2nd revision, accepted for publicatio

    Iterative Slepian-Wolf Decoding and FEC Decoding for Compress-and-Forward Systems

    Get PDF
    While many studies have concentrated on providing theoretical analysis for the relay assisted compress-and-forward systems little effort has yet been made to the construction and evaluation of a practical system. In this paper a practical CF system incorporating an error-resilient multilevel Slepian-Wolf decoder is introduced and a novel iterative processing structure which allows information exchanging between the Slepian-Wolf decoder and the forward error correction decoder of the main source message is proposed. In addition, a new quantization scheme is incorporated as well to avoid the complexity of the reconstruction of the relay signal at the final decoder of the destination. The results demonstrate that the iterative structure not only reduces the decoding loss of the Slepian-Wolf decoder, it also improves the decoding performance of the main message from the source

    Source and Physical-Layer Network Coding for Correlated Two-Way Relaying

    Full text link
    In this paper, we study a half-duplex two-way relay channel (TWRC) with correlated sources exchanging bidirectional information. In the case, when both sources have the knowledge of correlation statistics, a source compression with physical-layer network coding (SCPNC) scheme is proposed to perform the distributed compression at each source node. When only the relay has the knowledge of correlation statistics, we propose a relay compression with physical-layer network coding (RCPNC) scheme to compress the bidirectional messages at the relay. The closed-form block error rate (BLER) expressions of both schemes are derived and verified through simulations. It is shown that the proposed schemes achieve considerable improvements in both error performance and throughput compared with the conventional non-compression scheme in correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201

    Informed Network Coding for Minimum Decoding Delay

    Full text link
    Network coding is a highly efficient data dissemination mechanism for wireless networks. Since network coded information can only be recovered after delivering a sufficient number of coded packets, the resulting decoding delay can become problematic for delay-sensitive applications such as real-time media streaming. Motivated by this observation, we consider several algorithms that minimize the decoding delay and analyze their performance by means of simulation. The algorithms differ both in the required information about the state of the neighbors' buffers and in the way this knowledge is used to decide which packets to combine through coding operations. Our results show that a greedy algorithm, whose encodings maximize the number of nodes at which a coded packet is immediately decodable significantly outperforms existing network coding protocols.Comment: Proc. of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2008), Atlanta, USA, September 200

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    On the Design of a Novel Joint Network-Channel Coding Scheme for the Multiple Access Relay Channel

    Full text link
    This paper proposes a novel joint non-binary network-channel code for the Time-Division Decode-and-Forward Multiple Access Relay Channel (TD-DF-MARC), where the relay linearly combines -- over a non-binary finite field -- the coded sequences from the source nodes. A method based on an EXIT chart analysis is derived for selecting the best coefficients of the linear combination. Moreover, it is shown that for different setups of the system, different coefficients should be chosen in order to improve the performance. This conclusion contrasts with previous works where a random selection was considered. Monte Carlo simulations show that the proposed scheme outperforms, in terms of its gap to the outage probabilities, the previously published joint network-channel coding approaches. Besides, this gain is achieved by using very short-length codewords, which makes the scheme particularly attractive for low-latency applications.Comment: 28 pages, 9 figures; Submitted to IEEE Journal on Selected Areas in Communications - Special Issue on Theories and Methods for Advanced Wireless Relays, 201
    • …
    corecore