30,076 research outputs found

    Computer vision techniques for forest fire perception

    Get PDF
    This paper presents computer vision techniques for forest fire perception involving measurement of forest fire properties (fire front, flame height, flame inclination angle, fire base width) required for the implementation of advanced forest fire-fighting strategies. The system computes a 3D perception model of the fire and could also be used for visualizing the fire evolution in remote computer systems. The presented system integrates the processing of images from visual and infrared cameras. It applies sensor fusion techniques involving also telemetry sensors, and GPS. The paper also includes some results of forest fire experiments.European Commission EVG1-CT-2001-00043European Commission IST-2001-34304Ministerio de EducaciĂłn y Ciencia DPI2005-0229

    Digital terrain illustration

    Get PDF

    Use of plan curvature variations for the identification of ridges and channels on DEM

    Get PDF
    This paper proposes novel improvements in the traditional algorithms for the identification of ridge and channel (also called ravines) topographic features on raster digital elevation models (DEMs). The overall methodology consists of two main steps: (1) smoothing the DEM by applying a mean filter, and (2) detection of ridge and channel features as cells with positive and negative plan curvature respectively, along with a decline and incline in plan curvature away from the cell in direction orthogonal to the feature axis respectively. The paper demonstrates a simple approach to visualize the multi-scale structure of terrains and utilize it for semi-automated topographic feature identification. Despite its simplicity, the revised algorithm produced markedly superior outputs than a comparatively sophisticated feature extraction algorithm based on conic-section analysis of terrain

    Terrain Database Correlation Assessment Using an Open Source Tool

    Get PDF
    Configuring networked simulators for training military teams in a distributed environment requires the usage of a set of terrain databases to represent the same training area. The results of simulation exercises can be degraded if the terrain databases are poorly correlated. A number of methodologies for determining the correlation between terrain databaHowever, there are few computational tools for this task and most of them were developed to address government needs, have limited availability, and handle specific digital formats. The goal of this paper is thus to present a novel open source tool developed as part of an academic research project.Comment: 12 pages, I/ITSEC 201

    The Douglas-Peucker algorithm for line simplification: Re-evaluation through visualization

    Get PDF
    The primary aim of this paper is to illustrate the value of visualization in cartography and to indicate that tools for the generation and manipulation of realistic images are of limited value within this application. This paper demonstrates the value of visualization within one problem in cartography, namely the generalisation of lines. It reports on the evaluation of the Douglas-Peucker algorithm for line simplification. Visualization of the simplification process and of the results suggest that the mathematical measures of performance proposed by some other researchers are inappropriate, misleading and questionable

    GeoZui3D: Data Fusion for Interpreting Oceanographic Data

    Get PDF
    GeoZui3D stands for Geographic Zooming User Interface. It is a new visualization software system designed for interpreting multiple sources of 3D data. The system supports gridded terrain models, triangular meshes, curtain plots, and a number of other display objects. A novel center of workspace interaction method unifies a number of aspects of the interface. It creates a simple viewpoint control method, it helps link multiple views, and is ideal for stereoscopic viewing. GeoZui3D has a number of features to support real-time input. Through a CORBA interface external entities can influence the position and state of objects in the display. Extra windows can be attached to moving objects allowing for their position and data to be monitored. We describe the application of this system for heterogeneous data fusion, for multibeam QC and for ROV/AUV monitoring

    Accuracy assessment in glacier change analysis

    Get PDF
    This thesis assesses the accuracy of digital elevation models (DEM) generated from contour lines and LiDAR points (Light Detection and Ranging) employing several interpolation methods at different resolutions. The study area is Jostefonn glacier that is situated in Sogn og Fjordane county, Norway. There are several ways to assess accuracy of DEMs including simple ways such as visual comparison and more sophisticated methods like relative and absolute comparison. Digital elevation models of the Jostefonn glacier were created from contour lines for years 1966 and 1993. LiDAR data from year 2011 was used as a reference data set. Of all the interpolation methods tested Natural Neighbours (NN) and Triangular Irregular Network (TIN) algorithms rendered the best results and proved to be superior to other interpolation methods. Several resolutions were tested (the cell size of 5 m, 10 m, 20 m and 50 m) and the best outcome was achieved by as small cell size as possible. The digital elevation models were compared to a reference data set outside the glacier area both on a cell-by-cell basis and extracting information at test points. Both methods rendered the same results that are presented in this thesis. Several techniques were employed to assess the accuracy of digital elevation models including visualization and statistical analysis. Visualization techniques included comparison of the original contour lines with those generated from DEMs. Root mean square error, mean absolute error and other accuracy measures were statistically analysed. The greatest elevation difference between the digital elevation model of interest and the reference data set was observed in the areas of a steep terrain. The steeper the terrain, the greater the observed error. The magnitude of the errors can be reduced by using a smaller cell size but that this is offset by a larger amount of data and increased data processing time.Popular science Glaciers are very sensitive indicators of climate change. The major cause of melting glaciers is global warming. This rapid rate of melting has serious negative impact on the earth causing flooding, leaving impact on flora and fauna, resulting in shortage of freshwater and hydroelectricity. The long-term monitoring of glaciers and the knowledge gained from it can help governments, environmental and water resource managers to make plans to cope with impacts of climate change. Results from glacier monitoring ought to be precise, showing the actual situation compared to the situation in the past as well as predicting possible glacier changes in the future. The aim of this thesis was to investigate how sensitive the results were to different methods used in glacier change detection focusing on the quality of Digital Elevation Models (DEMs). The study area of this thesis was the Jostefonn glacier situated in Sogn and Fjordane county, Norway. Digital elevation models were created from contour lines for years 1966 and 1993. LiDAR data from year 2011 was used as a reference data set. Several techniques were employed to estimate the accuracy of digital elevation models including visualization, statistical analysis, analysing the accuracy of digital elevation models for terrain on different slopes, comparison to a reference data set outside the glacier area that was considered to be stable and where no elevation change was expected. The original contour lines (1966 and 1993) were compared with the ones generated from the created terrain models (glacier area) as well as with the contour lines from the reference data set (outside the glacier area) by visualization techniques. Accuracy measures (Root Mean Square Error, Mean Absolute Error and others) were statistically analysed. Natural Neighbours and Triangular Irregular Network interpolators proved to be superior to other algorithms used to create the terrain models. The best outcome was achieved by using as small cell size as possible. 5 m resolution rendered the best results from the resolutions tested (5 m, 10 m, 20 m and 50 m). The greatest elevation differences were observed in the areas of a steep terrain. The steeper the terrain, the greater the elevation difference. The terracing effect was noticed in the digital elevation models due to the high density of elevation points on the contour lines and hardly any points between them. Useful information can be obtained by estimating accuracy of digital elevation models. The accuracy of terrain models determines the reliability of glacier change analysis and that is why the digital elevation model must represent the terrain as accurately as possible. The different methods used in this thesis rendered very similar results and that indicated that the results were reliable and the terrain models created with Natural Neighbours and Triangular Irregular Network interpolators (resolution of 5 m) can be employed in further glacier change analysis
    • …
    corecore