10,902 research outputs found

    Improving sustainability through intelligent cargo and adaptive decision making

    Get PDF
    In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange

    Redesigning work organizations and technologies: experiences from European projects

    Get PDF
    Currently distributed business process (re) design (resulting in components of business networks) basically relies on technical criteria. And that are the main purposes of most research projects supported by EC. Through the process of building a European Research Area, this means a strong influence in the national research programmes. However it is generally accepted that it should also take into account social criteria and aspects such as the quality of working life, or participation in decision processes. Those were some of the objectives of projects in de 80s decade, and framed some of the main concepts and scientific approaches to work organisation. The democratic participation of network and organisations members in the design process is a critical success factor. This is not accepted by everyone, but is based in sufficient case studies. Nevertheless, in order to achieve an optimization that can satisfying the requirements of agility of a network of enterprises, more complex design methods must be developed. Thus, the support to the collaborative design of distributed work in a network of enterprises, through a concurrent approaching business processes, work organisation and task content is a key factor to achieve such purposes. Increasing needs in terms of amounts of information, agility, and support for collaboration without time and space constrains, imposes the use of a computer-based model.business process; networks; decision processes; collaborative design;

    The knowledge domain of chain and network science

    Get PDF
    This editorial paper aims to provide a framework to categorise and evaluate the domain of Chain and Network Science (CNS), and to provide an envelope for the research and management agenda. The authors strongly feel that although considerable progress has been made over the past couple of years in the development of the CNS domain, a number of important and exciting challenges are still waiting to be tackled. This paper provides a definition of the object of study of CNS, its central problem area, the organisation and governance of chain and network co-operation, and the relationships between chain organisation and technology development, market dynamics, and the economy and society at large. It indicates relevant sources of knowledge among the various academic disciplines. It touches upon CNS problem solving by identifying areas for knowledge development and CNS tool construction

    Evaluating the integration of supply chain information systems: A case study

    Get PDF
    Supply chain management (SCM) is the integrated management of business links, information flows and people. It is with this frame of reference that information systems integration from both intra- and inter-organisational levels becomes significant. Enterprise application integration (EAI) has emerged as software technologies to address the issue of integrating the portfolio of SCM components both within organisations and through cross-enterprises. EAI is based on a diversity of integration technologies (e.g. message brokers, ebXML) that differ in the type and level of integration they offer. However, none of these technologies claim to be a panacea to overcoming all integration problems but rather, need to be pieced together to support the linking of diverse applications that often exist within supply chains. In exploring the evaluation of supply chain integration, the authors propose a framework for evaluating the portfolio of integration technologies that are used to unify inter-organisational and intra-organisational information systems. The authors define and classify the permutations of information systems available according to their characteristics and integration requirements. These, classifications of system types are then adopted as part of the evaluation framework and empirically tested within a case study

    Networked inventory management by distributed object technology

    Get PDF

    Propelling the Potential of Enterprise Linked Data in Austria. Roadmap and Report

    Get PDF
    In times of digital transformation and considering the potential of the data-driven economy, it is crucial that data is not only made available, data sources can be trusted, but also data integrity can be guaranteed, necessary privacy and security mechanisms are in place, and data and access comply with policies and legislation. In many cases, complex and interdisciplinary questions cannot be answered by a single dataset and thus it is necessary to combine data from multiple disparate sources. However, because most data today is locked up in isolated silos, data cannot be used to its fullest potential. The core challenge for most organisations and enterprises in regards to data exchange and integration is to be able to combine data from internal and external data sources in a manner that supports both day to day operations and innovation. Linked Data is a promising data publishing and integration paradigm that builds upon standard web technologies. It supports the publishing of structured data in a semantically explicit and interlinked manner such that it can be easily connected, and consequently becomes more interoperable and useful. The PROPEL project - Propelling the Potential of Enterprise Linked Data in Austria - surveyed technological challenges, entrepreneurial opportunities, and open research questions on the use of Linked Data in a business context and developed a roadmap and a set of recommendations for policy makers, industry, and the research community. Shifting away from a predominantly academic perspective and an exclusive focus on open data, the project looked at Linked Data as an emerging disruptive technology that enables efficient enterprise data management in the rising data economy. Current market forces provide many opportunities, but also present several data and information management challenges. Given that Linked Data enables advanced analytics and decision-making, it is particularly suitable for addressing today's data and information management challenges. In our research, we identified a variety of highly promising use cases for Linked Data in an enterprise context. Examples of promising application domains include "customization and customer relationship management", "automatic and dynamic content production, adaption and display", "data search, information retrieval and knowledge discovery", as well as "data and information exchange and integration". The analysis also revealed broad potential across a large spectrum of industries whose structural and technological characteristics align well with Linked Data characteristics and principles: energy, retail, finance and insurance, government, health, transport and logistics, telecommunications, media, tourism, engineering, and research and development rank among the most promising industries for the adoption of Linked Data principles. In addition to approaching the subject from an industry perspective, we also examined the topics and trends emerging from the research community in the field of Linked Data and the Semantic Web. Although our analysis revolved around a vibrant and active community composed of academia and leading companies involved in semantic technologies, we found that industry needs and research discussions are somewhat misaligned. Whereas some foundation technologies such as knowledge representation and data creation/publishing/sharing, data management and system engineering are highly represented in scientific papers, specific topics such as recommendations, or cross-topics such as machine learning or privacy and security are marginally present. Topics such as big/large data and the internet of things are (still) on an upward trajectory in terms of attention. In contrast, topics that are very relevant for industry such as application oriented topics or those that relate to security, privacy and robustness are not attracting much attention. When it comes to standardisation efforts, we identified a clear need for a more in-depth analysis into the effectiveness of existing standards, the degree of coverage they provide with respect the foundations they belong to, and the suitability of alternative standards that do not fall under the core Semantic Web umbrella. Taking into consideration market forces, sector analysis of Linked Data potential, demand side analysis and the current technological status it is clear that Linked Data has a lot of potential for enterprises and can act as a key driver of technological, organizational, and economic change. However, in order to ensure a solid foundation for Enterprise Linked Data include there is a need for: greater awareness surrounding the potential of Linked Data in enterprises, lowering of entrance barriers via education and training, better alignment between industry demands and research activities, greater support for technology transfer from universities to companies. The PROPEL roadmap recommends concrete measures in order to propel the adoption of Linked Data in Austrian enterprises. These measures are structured around five fields of activities: "awareness and education", "technological innovation, research gaps, standardisation", "policy and legal", and "funding". Key short-term recommendations include the clustering of existing activities in order to raise visibility on an international level, the funding of key topics that are under represented by the community, and the setup of joint projects. In the medium term, we recommend the strengthening of existing academic and private education efforts via certification and to establish flagship projects that are based on national use cases that can serve as blueprints for transnational initiatives. This requires not only financial support, but also infrastructure support, such as data and services to build solutions on top. In the long term, we recommend cooperation with international funding schemes to establish and foster a European level agenda, and the setup of centres of excellence
    • 

    corecore