12,459 research outputs found

    Wild oscillations in a nonlinear neuron model with resets: (II) Mixed-mode oscillations

    Full text link
    This work continues the analysis of complex dynamics in a class of bidimensional nonlinear hybrid dynamical systems with resets modeling neuronal voltage dynamics with adaptation and spike emission. We show that these models can generically display a form of mixed-mode oscillations (MMOs), which are trajectories featuring an alternation of small oscillations with spikes or bursts (multiple consecutive spikes). The mechanism by which these are generated relies fundamentally on the hybrid structure of the flow: invariant manifolds of the continuous dynamics govern small oscillations, while discrete resets govern the emission of spikes or bursts, contrasting with classical MMO mechanisms in ordinary differential equations involving more than three dimensions and generally relying on a timescale separation. The decomposition of mechanisms reveals the geometrical origin of MMOs, allowing a relatively simple classification of points on the reset manifold associated to specific numbers of small oscillations. We show that the MMO pattern can be described through the study of orbits of a discrete adaptation map, which is singular as it features discrete discontinuities with unbounded left- and right-derivatives. We study orbits of the map via rotation theory for discontinuous circle maps and elucidate in detail complex behaviors arising in the case where MMOs display at most one small oscillation between each consecutive pair of spikes

    The geometry of symplectic pairs

    Full text link
    We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.Comment: to appear in Transactions of the American Mathematical Societ

    Forman's Ricci curvature - From networks to hypernetworks

    Full text link
    Networks and their higher order generalizations, such as hypernetworks or multiplex networks are ever more popular models in the applied sciences. However, methods developed for the study of their structural properties go little beyond the common name and the heavy reliance of combinatorial tools. We show that, in fact, a geometric unifying approach is possible, by viewing them as polyhedral complexes endowed with a simple, yet, the powerful notion of curvature - the Forman Ricci curvature. We systematically explore some aspects related to the modeling of weighted and directed hypernetworks and present expressive and natural choices involved in their definitions. A benefit of this approach is a simple method of structure-preserving embedding of hypernetworks in Euclidean N-space. Furthermore, we introduce a simple and efficient manner of computing the well established Ollivier-Ricci curvature of a hypernetwork.Comment: to appear: Complex Networks '18 (oral presentation

    A Growing Self-Organizing Network for Reconstructing Curves and Surfaces

    Full text link
    Self-organizing networks such as Neural Gas, Growing Neural Gas and many others have been adopted in actual applications for both dimensionality reduction and manifold learning. Typically, in these applications, the structure of the adapted network yields a good estimate of the topology of the unknown subspace from where the input data points are sampled. The approach presented here takes a different perspective, namely by assuming that the input space is a manifold of known dimension. In return, the new type of growing self-organizing network presented gains the ability to adapt itself in way that may guarantee the effective and stable recovery of the exact topological structure of the input manifold
    • …
    corecore