312,171 research outputs found

    Molecular Interactions. On the Ambiguity of Ordinary Statements in Biomedical Literature

    Get PDF
    Statements about the behavior of biochemical entities (e.g., about the interaction between two proteins) abound in the literature on molecular biology and are increasingly becoming the targets of information extraction and text mining techniques. We show that an accurate analysis of the semantics of such statements reveals a number of ambiguities that have to be taken into account in the practice of biomedical ontology engineering: Such statements can not only be understood as event reporting statements, but also as ascriptions of dispositions or tendencies that may or may not refer to collectives of interacting molecules or even to collectives of interaction events

    Nanopipettes as Monitoring Probes for the Single Living Cell: State of the Art and Future Directions in Molecular Biology.

    Get PDF
    Examining the behavior of a single cell within its natural environment is valuable for understanding both the biological processes that control the function of cells and how injury or disease lead to pathological change of their function. Single-cell analysis can reveal information regarding the causes of genetic changes, and it can contribute to studies on the molecular basis of cell transformation and proliferation. By contrast, whole tissue biopsies can only yield information on a statistical average of several processes occurring in a population of different cells. Electrowetting within a nanopipette provides a nanobiopsy platform for the extraction of cellular material from single living cells. Additionally, functionalized nanopipette sensing probes can differentiate analytes based on their size, shape or charge density, making the technology uniquely suited to sensing changes in single-cell dynamics. In this review, we highlight the potential of nanopipette technology as a non-destructive analytical tool to monitor single living cells, with particular attention to integration into applications in molecular biology

    Text-mining and information-retrieval services for molecular biology

    Get PDF
    Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators

    Evaluation of BioCreAtIvE assessment of task 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular Biology accumulated substantial amounts of data concerning functions of genes and proteins. Information relating to functional descriptions is generally extracted manually from textual data and stored in biological databases to build up annotations for large collections of gene products. Those annotation databases are crucial for the interpretation of large scale analysis approaches using bioinformatics or experimental techniques. Due to the growing accumulation of functional descriptions in biomedical literature the need for text mining tools to facilitate the extraction of such annotations is urgent. In order to make text mining tools useable in real world scenarios, for instance to assist database curators during annotation of protein function, comparisons and evaluations of different approaches on full text articles are needed.</p> <p>Results</p> <p>The Critical Assessment for Information Extraction in Biology (BioCreAtIvE) contest consists of a community wide competition aiming to evaluate different strategies for text mining tools, as applied to biomedical literature. We report on task two which addressed the automatic extraction and assignment of Gene Ontology (GO) annotations of human proteins, using full text articles. The predictions of task 2 are based on triplets of <it>protein – GO term – article passage</it>. The annotation-relevant text passages were returned by the participants and evaluated by expert curators of the GO annotation (GOA) team at the European Institute of Bioinformatics (EBI). Each participant could submit up to three results for each sub-task comprising task 2. In total more than 15,000 individual results were provided by the participants. The curators evaluated in addition to the annotation itself, whether the protein and the GO term were correctly predicted and traceable through the submitted text fragment.</p> <p>Conclusion</p> <p>Concepts provided by GO are currently the most extended set of terms used for annotating gene products, thus they were explored to assess how effectively text mining tools are able to extract those annotations automatically. Although the obtained results are promising, they are still far from reaching the required performance demanded by real world applications. Among the principal difficulties encountered to address the proposed task, were the complex nature of the GO terms and protein names (the large range of variants which are used to express proteins and especially GO terms in free text), and the lack of a standard training set. A range of very different strategies were used to tackle this task. The dataset generated in line with the BioCreative challenge is publicly available and will allow new possibilities for training information extraction methods in the domain of molecular biology.</p

    Incorporating molecular data in fungal systematics: a guide for aspiring researchers

    Full text link
    The last twenty years have witnessed molecular data emerge as a primary research instrument in most branches of mycology. Fungal systematics, taxonomy, and ecology have all seen tremendous progress and have undergone rapid, far-reaching changes as disciplines in the wake of continual improvement in DNA sequencing technology. A taxonomic study that draws from molecular data involves a long series of steps, ranging from taxon sampling through the various laboratory procedures and data analysis to the publication process. All steps are important and influence the results and the way they are perceived by the scientific community. The present paper provides a reflective overview of all major steps in such a project with the purpose to assist research students about to begin their first study using DNA-based methods. We also take the opportunity to discuss the role of taxonomy in biology and the life sciences in general in the light of molecular data. While the best way to learn molecular methods is to work side by side with someone experienced, we hope that the present paper will serve to lower the learning threshold for the reader.Comment: Submitted to Current Research in Environmental and Applied Mycology - comments most welcom

    Using molecular tools to differentiate closely related blackfly species of the genus Simulium

    Get PDF
    Biodiversity data are the foundation for conservation and managemet and taxonomy provides the reference system, skills and tools used to identify organisms. Species level data such as species richness, composition and diversity are common metrics. However, species level identification of organisms tends to be neglected within ecological work, especially within monitoring programmes, but also in conservation biology (Giangrande, 2003). This is because collection of species level data is time consuming, with identification of species-specific characteristics traditionally involving lengthy examination of samples using microscopy. In addition it is costly and species level data is almost impossible to collect if the taxa involved are species rich and difficult to identify (Báldi 1999). Other reasons why species level identification is neglected include the fact that sample collection can damage organisms, so diagnostic morphological features are lost, or that individuals may be in a life history stage or of a sex that does not have diagnostic morphological characteristics. Furthermore, the numbers of available expert taxonomists needed for species identification are in decline and have been for several decades. Species identification using molecular taxonomy where DNA is used as a marker is championed as a tool for resolving a range of morphological problems, such as the association of all life history stages, correlating male and female specimens to the same species and identifying partial specimens. Traditional taxonomy is built around morphological variations between species, with systematic inferences based upon shared physical characters. In molecular taxonomy on the other hand, proteins and genes are used to determine evolutionary relationships. ’DNA barcoding’ aims to provide an efficient method for species-level identification and it is thought that it will provide a powerful tool for taxonomic and biodiversity research (Hajibabaei et al. 2007). Cited strengths of a molecular based approach to species identification include the potential universality and objective nature of DNA data as taxonomic information, the usefulness of molecular data in animal groups characterized by morphological cryptic characters and the use of DNA sequence information to determine otherwise ‘unidentifiable’ biological material (such as incomplete specimens or immature specimens). Its aim is to increase the speed, precision and efficiency of field studies involving diverse and difficult to identify taxa and it has the potential to be automated to provide a rapid and consistently accurate supplementary identification system to traditional taxonomy. This project was a proof-of-concept study that investigated the feasibility of using DNA barcodes to differentiate closely related blackfly species of the genus Simulium. The longer term objective would be to apply such molecular approaches to organisms used in water quality monitoring and to biodiversity studies to provide a quick, robust but practical and cost effective tool for species identification. Great Britain is currently home to 33 morphospecies of blackfly many of which are morphologically close to other species and have been the cause of much systematic revision. In addition to evaluating the use of DNA barcodes in species identification, a non-destructive DNA extraction method was developed to preserve voucher pecimens that will allow a complete morphological classification to be carried after DNA extraction. Using molecular tools to differentiate closely related blackfly species of the genus Simulium v Finding an effective DNA barcode for an individual species involves accurate taxonomic identification and the retention of voucher specimens for future morphological studies. A rapid non-destructive method for DNA extraction from small insects was developed where no clean-up step was required prior to amplification and it was possible to extract DNA of sufficient quality in minutes retaining diagnostic morphological characteristics. For any molecular tool used for species discrimination, an important consideration is defining the specific genetic loci (e.g. the position of genes on a chromosome) to be monitored. All blackfly species in this study were successfully amplified with the standard barcoding coxI gene primer pair LCO1490 5'-GGT CAA CAA ATC ATA AAG ATA TTG G-3' and HCO2198 5'-TAA ACT TCA GGG TGA CCA AAA AAT CA-3' (Folmer et al. 1994) and we did not need to optimise or redesign the primer sequence
    • 

    corecore