14,845 research outputs found

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Adversarial classification: An adversarial risk analysis approach

    Full text link
    Classification problems in security settings are usually contemplated as confrontations in which one or more adversaries try to fool a classifier to obtain a benefit. Most approaches to such adversarial classification problems have focused on game theoretical ideas with strong underlying common knowledge assumptions, which are actually not realistic in security domains. We provide an alternative framework to such problem based on adversarial risk analysis, which we illustrate with several examples. Computational and implementation issues are discussed.Comment: Published in the International Journal for Approximate Reasonin

    Automation of the matrix element reweighting method

    Full text link
    Matrix element reweighting is a powerful experimental technique widely employed to maximize the amount of information that can be extracted from a collider data set. We present a procedure that allows to automatically evaluate the weights for any process of interest in the standard model and beyond. Given the initial, intermediate and final state particles, and the transfer functions for the final physics objects, such as leptons, jets, missing transverse energy, our algorithm creates a phase-space mapping designed to efficiently perform the integration of the squared matrix element and the transfer functions. The implementation builds up on MadGraph, it is completely automatized and publicly available. A few sample applications are presented that show the capabilities of the code and illustrate the possibilities for new studies that such an approach opens up.Comment: 41 pages, 21 figure

    Hybrid Intelligent Optimization Methods for Engineering Problems

    Get PDF
    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles

    Quantum metrology and its application in biology

    Full text link
    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artifacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient detail to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom

    Development of a multi-core and multi-accelerator platform for approximate computing

    Get PDF
    Proyecto de graduación (Licenciatura en Ingeniería en Electrónica) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Electrónica, 2017.Changing environment in the current technologies have introduce a gap between the ever growing needs of users and the state of present designs. As high data and hard computation applications moved forward in the near future, the current trend reaches for a greater performance. Approximate computing enters this scheme to boost a system overall attributes, while working with intrinsic and error tolerable characteristics both in software and hardware. This work proposes a multicore and multi-accelerator platform design that uses both exact and approximate versions, also providing interaction with a software counterpart to ensure usage of both layouts. A set of five di↵erent approximate accelerator versions and one exact, are present for three di↵erent image processing filters, Laplace, Sobel and Gauss, along with their respective characterization in terms of Power, Area and Delay time. This will show better results for design versions 2 and 3. Later it will be seen three di↵erent interfaces designs for accelerators along with a softcore processor, Altera’s NIOS II. Results gathered demonstrate a definitively improvement while using approximate accelerators in comparison with software and exact accelerator implementations. Memory accessing and filter operations times, for two di↵erent matrices sizes, present a gain of 500, 2000 and 1500 cycles measure for Laplace, Gauss and Sobel filters respectively, while contrasting software times, and a range of 28-84, 20-40 and 68-100 ticks decrease against the use of an exact accelerator
    • …
    corecore