16,224 research outputs found

    Quantum Chi-Squared and Goodness of Fit Testing

    Get PDF
    The density matrix in quantum mechanics parameterizes the statistical properties of the system under observation, just like a classical probability distribution does for classical systems. The expectation value of observables cannot be measured directly, it can only be approximated by applying classical statistical methods to the frequencies by which certain measurement outcomes (clicks) are obtained. In this paper, we make a detailed study of the statistical fluctuations obtained during an experiment in which a hypothesis is tested, i.e. the hypothesis that a certain setup produces a given quantum state. Although the classical and quantum problem are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. Just as in the case of classical hypothesis testing, the confidence in quantum hypothesis testing scales exponentially in the number of copies. In this paper, we will argue 1) that the physically relevant data of quantum experiments is only contained in the frequencies of the measurement outcomes, and that the statistical fluctuations of the experiment are essential, so that the correct formulation of the conclusions of a quantum experiment should be given in terms of hypothesis tests, 2) that the (classical) χ2\chi^2 test for distinguishing two quantum states gives rise to the quantum χ2\chi^2 divergence when optimized over the measurement basis, 3) present a max-min characterization for the optimal measurement basis for quantum goodness of fit testing, find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiency, and determine the associated divergence rates.Comment: 22 Pages, with a new section on parameter estimatio

    Toward Optimal Feature Selection in Naive Bayes for Text Categorization

    Full text link
    Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. We then introduce a new divergence measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure multi-distribution divergence for multi-class classification. Based on the JMH-divergence, we develop two efficient feature selection methods, termed maximum discrimination (MDMD) and MD−χ2MD-\chi^2 methods, for text categorization. The promising results of extensive experiments demonstrate the effectiveness of the proposed approaches.Comment: This paper has been submitted to the IEEE Trans. Knowledge and Data Engineering. 14 pages, 5 figure
    • …
    corecore