16,965 research outputs found

    Using Centroidal Voronoi Tessellations to Scale Up the Multi-dimensional Archive of Phenotypic Elites Algorithm

    Get PDF
    The recently introduced Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is an evolutionary algorithm capable of producing a large archive of diverse, high-performing solutions in a single run. It works by discretizing a continuous feature space into unique regions according to the desired discretization per dimension. While simple, this algorithm has a main drawback: it cannot scale to high-dimensional feature spaces since the number of regions increase exponentially with the number of dimensions. In this paper, we address this limitation by introducing a simple extension of MAP-Elites that has a constant, pre-defined number of regions irrespective of the dimensionality of the feature space. Our main insight is that methods from computational geometry could partition a high-dimensional space into well-spread geometric regions. In particular, our algorithm uses a centroidal Voronoi tessellation (CVT) to divide the feature space into a desired number of regions; it then places every generated individual in its closest region, replacing a less fit one if the region is already occupied. We demonstrate the effectiveness of the new "CVT-MAP-Elites" algorithm in high-dimensional feature spaces through comparisons against MAP-Elites in maze navigation and hexapod locomotion tasks

    ETEA: A euclidean minimum spanning tree-Based evolutionary algorithm for multiobjective optimization

    Get PDF
    © the Massachusetts Institute of TechnologyAbstract The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in the space, where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based Evolutionary Algorithm (ETEA) to solve multiobjective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically in ETEA, four strategies are introduced: 1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; 2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; 3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; 4) Three diversity indicators-the minimum edge, degree, and ETCD-with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/K001310/1, and the National Natural Science Foundation of China under Grant 61070088
    corecore