41,589 research outputs found

    Optimal Coverage in Wireless Sensor Network using Augmented Nature-Inspired Algorithm

    Get PDF
               One of the difficult problems that must be carefully considered before any network configuration is getting the best possible network coverage. The amount of redundant information that is sensed is decreased due to optimal network coverage, which also reduces the restricted energy consumption of battery-powered sensors. WSN sensors can sense, receive, and send data concurrently. Along with the energy limitation, accurate sensors and non-redundant data are a crucial challenge for WSNs. To maximize the ideal coverage and reduce the waste of the constrained sensor battery lifespan, all these actions must be accomplished. Augmented Nature-inspired algorithm is showing promise as a solution to the crucial problems in “Wireless Sensor Networks” (WSNs), particularly those related to the reduced sensor lifetime. For “Wireless Sensor Networks” (WSNs) to provide the best coverage, we focus on algorithms that are inspired by Augmented Nature in this research. In wireless sensor networks, the cluster head is chosen using the Diversity-Driven Multi-Parent Evolutionary Algorithm. For Data encryption Improved Identity Based Encryption (IIBE) is used.  For centralized optimization and reducing coverage gaps in WSNs Time variant Particle Swarm Optimization (PSO) is used. The suggested model's metrics are examined and compared to various traditional algorithms. This model solves the reduced sensor lifetime and redundant information in Wireless Sensor Networks (WSNs) as well as will give real and effective optimum coverage to the Wireless Sensor Networks (WSNs)

    The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    Get PDF
    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodesďż˝ resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Controlling the Coverage of Wireless Sensors Network Using Coverage in Block Algorithm

    Get PDF
    This research investigate the modeling of Blocks, Present in the sensing field and its impact in the computation of coverage path in wireless sensor networks (WSNs). The solutions of these problems are proposed using techniques from Approximation algorithm. In order to accomplish the designated task successfully, sensors need to actuate, compute and disseminate the acquired information amongst them. Intuitively, coverage denotes the quality of sensing of a sensor node. While a sensor senses. It needs to communicate with its neighboring sensor nodes in order to disseminate the acquired data. That is where connectivity comes in to place. In fact, coverage and connectivity together measure the quality of service (QoS) of a sensor network. Coverage and connectivity in wireless sensor networks are not unrelated problems. Therefore, the goal of an optimal sensor deployment strategy is to have a globally connected network, while optimizing coverage at the same time. By optimizing coverage, the deployment strategy would guarantee that optimum area in the sensing field is covered by sensor, as required by the underlying application, whereas by ensuring that the network is connected, it is ensured that the sensed information is transmitted to other nodes and possibly to a centralized base station (called sink) which makes valuable decision for the application. Many recent and ongoing research in sensor networks focus on optimizing coverage and connectivity by optimizing node placement strategy, minimizing number of nodes to guarantee required degree of coverage, maximizing network lifetime by minimizing energy usage, computing the most and least sensed path in the given region and so on. To solve these optimizing problems related to coverage, exiting research uses mostly probabilistic technique based on random graph theory, randomized algorithm, computational geometry, and so on. Of particular interest to us is the problem of computing the coverage in block (CIB), where give

    The k-Barrier Coverage Mechanism in Wireless Visual Sensor Networks

    Get PDF
    [[abstract]]Wireless Visual Sensor Networks (WVSNs) consist of a set of camera sensor nodes each of which equips with a camera and is capable of communicating with the other camera sensors within a specific distance range. As an extension of wireless sensor networks (WSNs), the WVSNs can provide richer information such as image and picture during executing targets monitoring and tracking tasks. Since the sensing area of each camera sensor is fan-shaped, existing barrier-coverage algorithms developed for WSNs cannot be applied to the WVSNs. This paper is considering to address the k-barrier coverage problems in WVSNs and to propose a barrier-coverage approach aiming at finding a maximal number of distinct defense curves with each of which consists of as few camera sensors as possible but still guarantees k-barrier coverage. Compared with the related work, experimental study reveals that the proposed k-barrier coverage mechanism constructs more defense curves than the k-barrier coverage and the number of camera sensors participating in each defense curve is smaller.[[conferencetype]]ĺś‹éš›[[conferencedate]]20120401~2012040

    Energy Efficient Handover Management in Cluster Based Wireless Sensor Network

    Full text link
    Wireless sensors are compact-size, low power, inexpensive devices which are capable to measure local environmental conditions or other parameters such as temperature, acceleration, and forward such information to a sink for proper processing. Wireless sensor networks (WSNs) have been under development by both academic and industrial societies for a while. By moving toward applications such as the area of medical care and disaster response mobility in wireless sensor networks has attracted a lot of attentions. In energy constraint sensor network, mobility handling introduces unique challenges in aspects like resource management, coverage, routing protocols, security, etc. This paper, proposes an energy-efficient mobility-aware MAC protocol to handle node handover among different clusters. The simulation-based experiments show that the proposed protocol has better performance compared to the existing S-MAC method

    Energy Efficient Handover Management in Cluster Based Wireless Sensor Network

    Get PDF
    Wireless sensors are compact-size, low power, inexpensive devices which are capable to measure local environmental conditions or other parameters such as temperature, acceleration, and forward such information to a sink for proper processing. Wireless sensor networks (WSNs) have been under development by both academic and industrial societies for a while. By moving toward applications such as the area of medical care and disaster response mobility in wireless sensor networks has attracted a lot of attentions. In energy constraint sensor network, mobility handling introduces unique challenges in aspects like resource management, coverage, routing protocols, security, etc. This paper, proposes an energy-efficient mobility-aware MAC protocol to handle node handover among different clusters. The simulation-based experiments show that the proposed protocol has better performance compared to the existing S-MAC method

    Novel Approach using Robust Routing Protocol in Underwater Acoustic Wireless Sensor Network with Network Simulator 2: A Review

    Get PDF
    In recent year wireless sensor network has been an emerging technology and promising technology in unveiling the riddle of the marine life and other underwater applications. As it is a permutation of computation, sensing and communication. In the 70% of the earth a huge amount of unexploited resources lies covered by oceans. To coordinate interact and share information among themselves to carry out sensing and monitoring function underwater sensor network consists number of various sensors and autonomous underwater vehicles deployed underwater. The two most fundamental problems in underwater sensor network are sensing coverage and network connectivity. The coverage problem reflects how well a sensor network is tracked or monitored by sensors. An underwater wireless sensor networks is the emerging field that is having the challenges in each field such as the deployment of nodes, routing, floating movement of sensors etc. This paper is concerned about the underwater acoustic wireless sensor network of routing protocol applications and UW-ASNs deployments for monitoring and control of underwater domains
    • …
    corecore