3 research outputs found

    Scalable One-Time Pad --- From Information Theoretic Security to Information Conservational Security

    Get PDF
    Whereas it is widely deemed an impossible task to scale down One-Time Pad (OTP) key length without sacrificing information theoretic security or network traffic, this project started with the attempt to develop a paradigm of Scalable One-Time Pad (S-OTP) ciphers based on information conservational computing/cryptography (ICC). This line of research, however, hits a dead-end at the limitation of information entropy and computational precision for full information conservation when long messages are transmitted. The dead-end suggests a 2-phase study. First, to explore the boundaries of scalability with data compression to reduce a long message to a tiny minimum but assuming only partial information conservation. Second, to explore the possibility of scalability with full information conservation but with limited increase of network traffic for transmitting long messages with information theoretic security. This paper reports results of the first phase. This study suggests two future directions of ICC: (1) using S-OTP to scale down key length at the expense of limited increase of network traffic for full information conservation (See solution at https://eprint.iacr.org/2019/913.pdf ); (2) develop a type of quantum crypto machine for full information conservation

    G-CPT Symmetry of Quantum Emergence and Submergence -- An Information Conservational Multiagent Cellular Automata Unification of CPT Symmetry and CP Violation for Equilibrium-Based Many-World Causal Analysis of Quantum Coherence and Decoherence

    Get PDF
    An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G -CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle- antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G -CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA; on the other hand, G -CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested t hat all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G -CPT symmetry. It is contended that G -CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity— a fundamental departure from “what goes around comes around ”. The new paradigm leads to a number of predictions and challenges

    Information Conservational YinYang Bipolar Quantum-Fuzzy Cognitive Maps-Mapping Business Data to Business Intelligence

    No full text
    Based on YinYang bipolar fuzzy sets and bipolar quantum linear algebra (BQLA), information conservational bi-polar quantum-fuzzy cognitive maps (BQFCMs) are proposed. It is shown that a bipolar relation can be normalized to a bipolar quantum-fuzzy logic gate (BQFLG) matrix – the equivalent of a BQFCM for equilibrium-based business intelligence. Computability and applicability of BQFCMs are illustrated with case studies in portfolio management, supply-production optimization and import-export rebalancing. This work is expected to add bipolar quantum computational intelligence (QCI) as an integrative dimension to computational intelligence. Its philosophical and mathematical uniqueness is discussed. An unsettled debate is outlined
    corecore