251 research outputs found

    Analytical modelling of the effect of noise on the terahertz in-vivo communication channel for body-centric nano-networks

    Get PDF
    The paper presents an analytical model of the terahertz (THz) communication channel (0.1 - 10 THz) for in-vivo nano-networks by considering the effect of noise on link quality and information rate. The molecular absorption noise model for in-vivo nano-networks is developed based on the physical mechanisms of the noise present in the medium, which takes into account both the radiation of the medium and the molecular absorption from the transmitted signal. The signal-to-noise ratio (SNR) of the communication channel is investigated for different power allocation schemes and the maximum achievable information rate is studied to explore the potential of THz communication inside the human body. The obtained results show that the information rate is inversely proportional to the transmission distance. Based on the studies on channel performance, it can be concluded that the achievable transmission distance of in-vivo THz nano-networks should be restrained to approximately 2 mm maximum, while the operation band of in-vivo THz nano-networks should be limited to the lower band of the THz band. This motivates the utilisation of hierarchical/cooperative networking concepts and hybrid communication techniques using molecular and electromagnetic methods for future body-centric nano-networks

    Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale

    Get PDF
    Graphene is a promising material which has been proposed to build graphene plasmonic miniaturized antennas, or graphennas, which show excellent conditions for the propagation of Surface Plasmon Polariton (SPP) waves in the terahertz band. Due to their small size of just a few micrometers, graphennas allow the implementation of wireless communications among nanosystems, leading to a novel paradigm known as Graphene-enabled Wireless Communications (GWC). In this paper, an analytical framework is developed to evaluate how the channel capacity of a GWC system scales as its dimensions shrink. In particular, we study how the unique propagation of SPP waves in graphennas will impact the channel capacity. Next, we further compare these results with respect to the case when metallic antennas are used, in which these plasmonic effects do not appear. In addition, asymptotic expressions for the channel capacity are derived in the limit when the system dimensions tend to zero. In this scenario, necessary conditions to ensure the feasibility of GWC networks are found. Finally, using these conditions, new guidelines are derived to explore the scalability of various parameters, such as transmission range and transmitted power. These results may be helpful for designers of future GWC systems and networks.Peer ReviewedPostprint (author’s final draft

    Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band

    Get PDF
    Abstract—Wireless nanosensor networks (WNSNs) consist of nanosized communicating devices, which can detect and measure new types of events at the nanoscale. WNSNs are the enabling technology for unique applications such as intrabody drug delivery systems or surveillance networks for chemical attack prevention. One of the major bottlenecks in WNSNs is posed by the very limited energy that can be stored in a nanosensor mote in contrast to the energy that is required by the device to communicate. Recently, novel energy harvesting mechanisms have been proposed to replenish the energy stored in nanodevices. With these mechanisms, WNSNs can overcome their energy bottleneck and even have infinite lifetime (perpetual WNSNs), provided that the energy harvesting and consumption processes are jointly designed. In this paper, an energy model for self-powered nanosensor motes is developed, which successfully captures the correlation between the energy harvestin

    Modelling of the Terahertz Communication Channel for In-vivo Nano-networks in the Presence of Noise

    Get PDF
    This paper focuses on the modelling of communication channel noise inside human tissues at the THz band (0.1-10THz). A novel model is put forward based on the study of the physical mechanism of the channel noise in the medium, which takes into account both the radiation of the medium and the molecular absorption from the transmitted signal. The derivation and the general concepts of the noise modelling is detailed in the paper. The results show that the channel noise power spectral density at the scale of several micrometres is at acceptable levels and the value tends to decrease with the increase of both distance and frequency. In addition, the channel noise is also related to the composition of the human tissues, with the result of higher channel noise in tissues with higher water concentration. The conclusion drawn from the conducted study and analysis paves the way for more comprehensive characterisation of the electromagnetic channel within in-vivo nano-networks

    A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks

    Get PDF
    With the huge advancement of nanotechnology over the past years, the devices are shrinking into micro-scale, even nano-scale. Additionally, the Internet of nano-things (IoNTs) are generally regarded as the ultimate formation of the current sensor networks and the development of nanonetworks would be of great help to its fulfilment, which would be ubiquitous with numerous applications in all domains of life. However, the communication between the devices in such nanonetworks is still an open problem. Body-centric nanonetworks are believed to play an essential role in the practical application of IoNTs. BCNNs are also considered as domain specific like wireless sensor networks and always deployed on purpose to support a particular application. In these networks, electromagnetic and molecular communications are widely considered as two main promising paradigms and both follow their own development process. In this survey, the recent developments of these two paradigms are first illustrated in the aspects of applications, network structures, modulation techniques, coding techniques and security to then investigate the potential of hybrid communication paradigms. Meanwhile, the enabling technologies have been presented to apprehend the state-of-art with the discussion on the possibility of the hybrid technologies. Additionally, the inter-connectivity of electromagnetic and molecular body-centric nanonetworks is discussed. Afterwards, the related security issues of the proposed networks are discussed. Finally, the challenges and open research directions are presented

    Strengthening the Growth of Indian Defence by Harnessing Nanotechnology - A Prospective

    Get PDF
    Nano-networking is truly interdisciplinary and emerging field including nanotechnology, biotechnology, and ICT. It is a developing research area which consists of identifying, modeling, analyzing and organizing communication protocols between devices in Nanoscale environments. The main goal is to explore beyond the existing capabilities of Nanodevices by cooperating and sharing information between them. Since conventional communication models are not appropriate to represent Nanonetworks, it is necessary to introduce new communication paradigm in the form of suitable protocols and network architectures. Nanotechnology could greatly improve some of the existing technologies and thus create new operational opportunities or, at least, help the military forces to strengthen themselves in the battlefield. The paper presents a brief overview of nanotechnology applications in defence sector and the challenges towards realization of protocols for Nanocommunication. The research is going forward and one can expect more protection rather than damage in the domain of ‘Nano-age’.Defence Science Journal, 2013, 63(1), pp.46-52, DOI:http://dx.doi.org/10.14429/dsj.63.376
    • …
    corecore