39,641 research outputs found

    OTFS-NOMA: An Efficient Approach for Exploiting Heterogenous User Mobility Profiles

    Get PDF
    This paper considers a challenging communication scenario, in which users have heterogenous mobility profiles, e.g., some users are moving at high speeds and some users are static. A new non-orthogonal multiple-access (NOMA) transmission protocol that incorporates orthogonal time frequency space (OTFS) modulation is proposed. Thereby, users with different mobility profiles are grouped together for the implementation of NOMA. The proposed OTFS-NOMA protocol is shown to be applicable to both uplink and downlink transmission, where sophisticated transmit and receive strategies are developed to remove inter-symbol interference and harvest both multi-path and multi-user diversity. Analytical results demonstrate that both the high-mobility and low-mobility users benefit from the application of OTFS-NOMA. In particular, the use of NOMA allows the spreading of the high-mobility users' signals over a large amount of time-frequency resources, which enhances the OTFS resolution and improves the detection reliability. In addition, OTFS-NOMA ensures that low-mobility users have access to bandwidth resources which in conventional OTFS-orthogonal multiple access (OTFS-NOMA) would be solely occupied by the high-mobility users. Thus, OTFS-NOMA improves the spectral efficiency and reduces latency

    Inter-sensor propagation delay estimation using sources of opportunity

    Full text link
    Propagation delays are intensively used for Structural Health Monitoring or Sensor Network Localization. In this paper, we study the performances of acoustic propagation delay estimation between two sensors, using sources of opportunity only. Such sources are defined as being uncontrolled by the user (activation time, location, spectral content in time and space), thus preventing the direct estimation with classical active approaches, such as TDOA, RSSI and AOA. Observation models are extended from the literature to account for the spectral characteristics of the sources in this passive context and we show how time-filtered sources of opportunity impact the retrieval of the propagation delay between two sensors. A geometrical analogy is then proposed that leads to a lower bound on the variance of the propagation delay estimation that accounts for both the temporal and the spatial properties of the sources field

    Unified Capacity Limit of Non-coherent Wideband Fading Channels

    Full text link
    In non-coherent wideband fading channels where energy rather than spectrum is the limiting resource, peaky and non-peaky signaling schemes have long been considered species apart, as the first approaches asymptotically the capacity of a wideband AWGN channel with the same average SNR, whereas the second reaches a peak rate at some finite critical bandwidth and then falls to zero as bandwidth grows to infinity. In this paper it is shown that this distinction is in fact an artifact of the limited attention paid in the past to the product between the bandwidth and the fraction of time it is in use. This fundamental quantity, called bandwidth occupancy, measures average bandwidth usage over time. For all signaling schemes with the same bandwidth occupancy, achievable rates approach to the wideband AWGN capacity within the same gap as the bandwidth occupancy approaches its critical value, and decrease to zero as the occupancy goes to infinity. This unified analysis produces quantitative closed-form expressions for the ideal bandwidth occupancy, recovers the existing capacity results for (non-)peaky signaling schemes, and unveils a trade-off between the accuracy of approximating capacity with a generalized Taylor polynomial and the accuracy with which the optimal bandwidth occupancy can be bounded.Comment: Accepted for publication in IEEE Transactions on Wireless Communications. Copyright may be transferred without notic

    Noncoherent Capacity of Underspread Fading Channels

    Full text link
    We derive bounds on the noncoherent capacity of wide-sense stationary uncorrelated scattering (WSSUS) channels that are selective both in time and frequency, and are underspread, i.e., the product of the channel's delay spread and Doppler spread is small. For input signals that are peak constrained in time and frequency, we obtain upper and lower bounds on capacity that are explicit in the channel's scattering function, are accurate for a large range of bandwidth and allow to coarsely identify the capacity-optimal bandwidth as a function of the peak power and the channel's scattering function. We also obtain a closed-form expression for the first-order Taylor series expansion of capacity in the limit of large bandwidth, and show that our bounds are tight in the wideband regime. For input signals that are peak constrained in time only (and, hence, allowed to be peaky in frequency), we provide upper and lower bounds on the infinite-bandwidth capacity and find cases when the bounds coincide and the infinite-bandwidth capacity is characterized exactly. Our lower bound is closely related to a result by Viterbi (1967). The analysis in this paper is based on a discrete-time discrete-frequency approximation of WSSUS time- and frequency-selective channels. This discretization explicitly takes into account the underspread property, which is satisfied by virtually all wireless communication channels.Comment: Submitted to the IEEE Transactions on Information Theor

    Pulsar timing arrays as imaging gravitational wave telescopes: angular resolution and source (de)confusion

    Full text link
    Pulsar timing arrays (PTAs) will be sensitive to a finite number of gravitational wave (GW) "point" sources (e.g. supermassive black hole binaries). N quiet pulsars with accurately known distances d_{pulsar} can characterize up to 2N/7 distant chirping sources per frequency bin \Delta f_{gw}=1/T, and localize them with "diffraction limited" precision \delta\theta \gtrsim (1/SNR)(\lambda_{gw}/d_{pulsar}). Even if the pulsar distances are poorly known, a PTA with F frequency bins can still characterize up to (2N/7)[1-(1/2F)] sources per bin, and the quasi-singular pattern of timing residuals in the vicinity of a GW source still allows the source to be localized quasi-topologically within roughly the smallest quadrilateral of quiet pulsars that encircles it on the sky, down to a limiting resolution \delta\theta \gtrsim (1/SNR) \sqrt{\lambda_{gw}/d_{pulsar}}. PTAs may be unconfused, even at the lowest frequencies, with matched filtering always appropriate.Comment: 7 pages, 1 figure, matches Phys.Rev.D versio

    A Spectral Graph Uncertainty Principle

    Full text link
    The spectral theory of graphs provides a bridge between classical signal processing and the nascent field of graph signal processing. In this paper, a spectral graph analogy to Heisenberg's celebrated uncertainty principle is developed. Just as the classical result provides a tradeoff between signal localization in time and frequency, this result provides a fundamental tradeoff between a signal's localization on a graph and in its spectral domain. Using the eigenvectors of the graph Laplacian as a surrogate Fourier basis, quantitative definitions of graph and spectral "spreads" are given, and a complete characterization of the feasibility region of these two quantities is developed. In particular, the lower boundary of the region, referred to as the uncertainty curve, is shown to be achieved by eigenvectors associated with the smallest eigenvalues of an affine family of matrices. The convexity of the uncertainty curve allows it to be found to within ε\varepsilon by a fast approximation algorithm requiring O(ε−1/2)O(\varepsilon^{-1/2}) typically sparse eigenvalue evaluations. Closed-form expressions for the uncertainty curves for some special classes of graphs are derived, and an accurate analytical approximation for the expected uncertainty curve of Erd\H{o}s-R\'enyi random graphs is developed. These theoretical results are validated by numerical experiments, which also reveal an intriguing connection between diffusion processes on graphs and the uncertainty bounds.Comment: 40 pages, 8 figure

    Gravitational wave astronomy of single sources with a pulsar timing array

    Full text link
    Abbreviated: We investigate the potential of detecting the gravitational wave from individual binary black hole systems using pulsar timing arrays (PTAs) and calculate the accuracy for determining the GW properties. This is done in a consistent analysis, which at the same time accounts for the measurement of the pulsar distances via the timing parallax. We find that, at low redshift, a PTA is able to detect the nano-Hertz GW from super massive black hole binary systems with masses of \sim10^8 - 10^{10}\,M_{\sun} less than ∼105\sim10^5\,years before the final merger, and those with less than ∼103−104\sim10^3 - 10^4 years before merger may allow us to detect the evolution of binaries. We derive an analytical expression to describe the accuracy of a pulsar distance measurement via timing parallax. We consider five years of bi-weekly observations at a precision of 15\,ns for close-by (∼0.5−1\sim 0.5 - 1\,kpc) pulsars. Timing twenty pulsars would allow us to detect a GW source with an amplitude larger than 5×10−175\times 10^{-17}. We calculate the corresponding GW and binary orbital parameters and their measurement precision. The accuracy of measuring the binary orbital inclination angle, the sky position, and the GW frequency are calculated as functions of the GW amplitude. We note that the "pulsar term", which is commonly regarded as noise, is essential for obtaining an accurate measurement for the GW source location. We also show that utilizing the information encoded in the GW signal passing the Earth also increases the accuracy of pulsar distance measurements. If the gravitational wave is strong enough, one can achieve sub-parsec distance measurements for nearby pulsars with distance less than ∼0.5−1\sim 0.5 - 1\,kpc.Comment: 16 pages, 5 figure,, accepted by MNRA

    Sampling Large Data on Graphs

    Full text link
    We consider the problem of sampling from data defined on the nodes of a weighted graph, where the edge weights capture the data correlation structure. As shown recently, using spectral graph theory one can define a cut-off frequency for the bandlimited graph signals that can be reconstructed from a given set of samples (i.e., graph nodes). In this work, we show how this cut-off frequency can be computed exactly. Using this characterization, we provide efficient algorithms for finding the subset of nodes of a given size with the largest cut-off frequency and for finding the smallest subset of nodes with a given cut-off frequency. In addition, we study the performance of random uniform sampling when compared to the centralized optimal sampling provided by the proposed algorithms.Comment: To be presented at GlobalSIP 201
    • …
    corecore