73,599 research outputs found

    Weighted LDA techniques for I-vector based speaker verification

    Get PDF
    This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification

    Text-Independent Speaker Verification Using 3D Convolutional Neural Networks

    Full text link
    In this paper, a novel method using 3D Convolutional Neural Network (3D-CNN) architecture has been proposed for speaker verification in the text-independent setting. One of the main challenges is the creation of the speaker models. Most of the previously-reported approaches create speaker models based on averaging the extracted features from utterances of the speaker, which is known as the d-vector system. In our paper, we propose an adaptive feature learning by utilizing the 3D-CNNs for direct speaker model creation in which, for both development and enrollment phases, an identical number of spoken utterances per speaker is fed to the network for representing the speakers' utterances and creation of the speaker model. This leads to simultaneously capturing the speaker-related information and building a more robust system to cope with within-speaker variation. We demonstrate that the proposed method significantly outperforms the traditional d-vector verification system. Moreover, the proposed system can also be an alternative to the traditional d-vector system which is a one-shot speaker modeling system by utilizing 3D-CNNs.Comment: Accepted to be published in IEEE International Conference on Multimedia and Expo (ICME) 201

    ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification

    Get PDF
    Current speaker verification techniques rely on a neural network to extract speaker representations. The successful x-vector architecture is a Time Delay Neural Network (TDNN) that applies statistics pooling to project variable-length utterances into fixed-length speaker characterizing embeddings. In this paper, we propose multiple enhancements to this architecture based on recent trends in the related fields of face verification and computer vision. Firstly, the initial frame layers can be restructured into 1-dimensional Res2Net modules with impactful skip connections. Similarly to SE-ResNet, we introduce Squeeze-and-Excitation blocks in these modules to explicitly model channel interdependencies. The SE block expands the temporal context of the frame layer by rescaling the channels according to global properties of the recording. Secondly, neural networks are known to learn hierarchical features, with each layer operating on a different level of complexity. To leverage this complementary information, we aggregate and propagate features of different hierarchical levels. Finally, we improve the statistics pooling module with channel-dependent frame attention. This enables the network to focus on different subsets of frames during each of the channel's statistics estimation. The proposed ECAPA-TDNN architecture significantly outperforms state-of-the-art TDNN based systems on the VoxCeleb test sets and the 2019 VoxCeleb Speaker Recognition Challenge.Comment: proceedings of INTERSPEECH 202

    Quality Measures for Speaker Verification with Short Utterances

    Get PDF
    The performances of the automatic speaker verification (ASV) systems degrade due to the reduction in the amount of speech used for enrollment and verification. Combining multiple systems based on different features and classifiers considerably reduces speaker verification error rate with short utterances. This work attempts to incorporate supplementary information during the system combination process. We use quality of the estimated model parameters as supplementary information. We introduce a class of novel quality measures formulated using the zero-order sufficient statistics used during the i-vector extraction process. We have used the proposed quality measures as side information for combining ASV systems based on Gaussian mixture model-universal background model (GMM-UBM) and i-vector. The proposed methods demonstrate considerable improvement in speaker recognition performance on NIST SRE corpora, especially in short duration conditions. We have also observed improvement over existing systems based on different duration-based quality measures.Comment: Accepted for publication in Digital Signal Processing: A Review Journa

    Audio-Visual Speaker Verification via Joint Cross-Attention

    Full text link
    Speaker verification has been widely explored using speech signals, which has shown significant improvement using deep models. Recently, there has been a surge in exploring faces and voices as they can offer more complementary and comprehensive information than relying only on a single modality of speech signals. Though current methods in the literature on the fusion of faces and voices have shown improvement over that of individual face or voice modalities, the potential of audio-visual fusion is not fully explored for speaker verification. Most of the existing methods based on audio-visual fusion either rely on score-level fusion or simple feature concatenation. In this work, we have explored cross-modal joint attention to fully leverage the inter-modal complementary information and the intra-modal information for speaker verification. Specifically, we estimate the cross-attention weights based on the correlation between the joint feature presentation and that of the individual feature representations in order to effectively capture both intra-modal as well inter-modal relationships among the faces and voices. We have shown that efficiently leveraging the intra- and inter-modal relationships significantly improves the performance of audio-visual fusion for speaker verification. The performance of the proposed approach has been evaluated on the Voxceleb1 dataset. Results show that the proposed approach can significantly outperform the state-of-the-art methods of audio-visual fusion for speaker verification
    corecore