176,940 research outputs found

    MAVERICK: A Synthetic Murder Mystery Network Dataset to Support Sensemaking Research

    Get PDF
    AbstractThe MAVERICK dataset was created to support a series of empirical studies looking at the effectiveness of network visualizations intended to support information foraging and human sensemaking within the domain of counterinsurgency intelligence analysis. This synthetic dataset is structured as a forensic mystery with the central goal of solving a fictional murder. The dataset includes 181 text-based reports, with additional media included with some messages as attachments, collected from various sources of varying reliability. The reports are framed as being collected from the perspective of a reporter investigating the murder through interviews with suspects and observations taken at the site the murder. The dataset includes intentional and unintentional deception along with calculated source reliabilities based on available evidence. The dataset is dynamic in nature, as the information in the dataset evolves and expands over a simulated period of time. This is done to both to simulate a real-world scenario, and to allow for evolutionary tasks and experiments to be performed using the dataset. The dataset is designed to be complex enough to simulate a real-world, while remaining accessible to individuals without experience in a specific domain of interest. This meant that it had to be on a topic that did not require prior domain knowledge to understand available information or to understand what strategies should be applied during analysis of the dataset. The solution to these challenges was the development of a fictional murder mystery. The plot involves a murder that took place over the course of a weekend with several possible suspects at a large private estate. This scenario allowed for a great deal of complexity; however, it was also a subject matter that could be easily understood by participants without prerequisite domain experience

    Reuse of Neural Modules for General Video Game Playing

    Full text link
    A general approach to knowledge transfer is introduced in which an agent controlled by a neural network adapts how it reuses existing networks as it learns in a new domain. Networks trained for a new domain can improve their performance by routing activation selectively through previously learned neural structure, regardless of how or for what it was learned. A neuroevolution implementation of this approach is presented with application to high-dimensional sequential decision-making domains. This approach is more general than previous approaches to neural transfer for reinforcement learning. It is domain-agnostic and requires no prior assumptions about the nature of task relatedness or mappings. The method is analyzed in a stochastic version of the Arcade Learning Environment, demonstrating that it improves performance in some of the more complex Atari 2600 games, and that the success of transfer can be predicted based on a high-level characterization of game dynamics.Comment: Accepted at AAAI 1

    Pathways to proficiency : the alignment of language proficiency scales for assessing competence in English language

    Get PDF

    Developing web searching skills in translator training

    Get PDF
    • …
    corecore