778,423 research outputs found

    Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation

    Full text link
    We adapt tools from information theory to analyze how an observer comes to synchronize with the hidden states of a finitary, stationary stochastic process. We show that synchronization is determined by both the process's internal organization and by an observer's model of it. We analyze these components using the convergence of state-block and block-state entropies, comparing them to the previously known convergence properties of the Shannon block entropy. Along the way, we introduce a hierarchy of information quantifiers as derivatives and integrals of these entropies, which parallels a similar hierarchy introduced for block entropy. We also draw out the duality between synchronization properties and a process's controllability. The tools lead to a new classification of a process's alternative representations in terms of minimality, synchronizability, and unifilarity.Comment: 25 pages, 13 figures, 1 tabl

    Manipulating Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases

    Full text link
    Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum information science. However, fermionic atoms are neutral and thus are difficult to manipulate. Here, we theoretically investigate the control of emergent Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases. We discuss (i) how to move Majorana fermions by increasing or decreasing an effective Zeeman field, which acts like a solid state control voltage gate; and (ii) how to create a pair of Majorana fermions by adding a magnetic impurity potential. We discuss the experimental realization of our control scheme in an ultracold Fermi gas of 40^{40}K atoms.Comment: 4 papges, 6 figure

    Efficient optical quantum information processing

    Full text link
    Quantum information offers the promise of being able to perform certain communication and computation tasks that cannot be done with conventional information technology (IT). Optical Quantum Information Processing (QIP) holds particular appeal, since it offers the prospect of communicating and computing with the same type of qubit. Linear optical techniques have been shown to be scalable, but the corresponding quantum computing circuits need many auxiliary resources. Here we present an alternative approach to optical QIP, based on the use of weak cross-Kerr nonlinearities and homodyne measurements. We show how this approach provides the fundamental building blocks for highly efficient non-absorbing single photon number resolving detectors, two qubit parity detectors, Bell state measurements and finally near deterministic control-not (CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum computation; References update
    • …
    corecore