179,469 research outputs found

    Metabolic analyzer

    Get PDF
    An apparatus is described for the measurement of metabolic rate and breathing dynamics in which inhaled and exhaled breath are sensed by sealed, piston-displacement type spirometers. These spirometers electrically measure the volume of inhaled and exhaled breath. A mass spectrometer analyzes simultaneously for oxygen, carbon dioxide, nitrogen and water vapor. Computation circuits are responsive to the outputs of the spirometers, mass spectrometer, temperature, pressure and timing signals and compute oxygen consumption, carbon dioxide production, minute volume and respiratory exchange ratio. A selective indicator provides for read-out of these data at predetermined cyclic intervals

    Acceleration of Coarse Grain Molecular Dynamics on GPU Architectures

    Get PDF
    Coarse grain (CG) molecular models have been proposed to simulate complex sys- tems with lower computational overheads and longer timescales with respect to atom- istic level models. However, their acceleration on parallel architectures such as Graphic Processing Units (GPU) presents original challenges that must be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dynamics simulator, to which we applied specic optimizations for CG models, such as dedicated data structures to handle dierent bead type interac- tions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated system features of CG models impacting the achievable speed-up and accuracy of results, using three dierent GPU architectures as case studie

    A new sequential covering strategy for inducing classification rules with ant colony algorithms

    Get PDF
    Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms

    A Minimization Approach to Conservation Laws With Random Initial Conditions and Non-smooth, Non-strictly Convex Flux

    Full text link
    We obtain solutions to conservation laws under any random initial conditions that are described by Gaussian stochastic processes (in some cases discretized). We analyze the generalization of Burgers' equation for a smooth flux function H(p)=pjH\left( p\right) =\left\vert p\right\vert ^{j} for j2j\geq2 under random initial data. We then consider a piecewise linear, non-smooth and non-convex flux function paired with general discretized Gaussian stochastic process initial data. By partitioning the real line into a finite number of points, we obtain an exact expression for the solution of this problem. From this we can also find exact and approximate formulae for the density of shocks in the solution profile at a given time tt and spatial coordinate xx. We discuss the simplification of these results in specific cases, including Brownian motion and Brownian bridge, for which the inverse covariance matrix and corresponding eigenvalue spectrum have some special properties. We calculate the transition probabilities between various cases and examine the variance of the solution w(x,t)w\left(x,t\right) in both xx and tt. We also describe how results may be obtained for a non-discretized version of a Gaussian stochastic process by taking the continuum limit as the partition becomes more fine.Comment: 36 pages, 5 figures, small update from published versio
    corecore