235,384 research outputs found

    The Localized Reduced Basis Multiscale method for two-phase flows in porous media

    Full text link
    In this work, we propose a novel model order reduction approach for two-phase flow in porous media by introducing a formulation in which the mobility, which realizes the coupling between phase saturations and phase pressures, is regarded as a parameter to the pressure equation. Using this formulation, we introduce the Localized Reduced Basis Multiscale method to obtain a low-dimensional surrogate of the high-dimensional pressure equation. By applying ideas from model order reduction for parametrized partial differential equations, we are able to split the computational effort for solving the pressure equation into a costly offline step that is performed only once and an inexpensive online step that is carried out in every time step of the two-phase flow simulation, which is thereby largely accelerated. Usage of elements from numerical multiscale methods allows us to displace the computational intensity between the offline and online step to reach an ideal runtime at acceptable error increase for the two-phase flow simulation

    Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives

    Full text link
    Particle Swarm Optimization (PSO) is a metaheuristic global optimization paradigm that has gained prominence in the last two decades due to its ease of application in unsupervised, complex multidimensional problems which cannot be solved using traditional deterministic algorithms. The canonical particle swarm optimizer is based on the flocking behavior and social co-operation of birds and fish schools and draws heavily from the evolutionary behavior of these organisms. This paper serves to provide a thorough survey of the PSO algorithm with special emphasis on the development, deployment and improvements of its most basic as well as some of the state-of-the-art implementations. Concepts and directions on choosing the inertia weight, constriction factor, cognition and social weights and perspectives on convergence, parallelization, elitism, niching and discrete optimization as well as neighborhood topologies are outlined. Hybridization attempts with other evolutionary and swarm paradigms in selected applications are covered and an up-to-date review is put forward for the interested reader.Comment: 34 pages, 7 table

    A Survey on Temporal Logics

    Full text link
    This paper surveys main and recent studies on temporal logics in a broad sense by presenting various logic systems, dealing with various time structures, and discussing important features, such as decidability (or undecidability) results, expressiveness and proof systems

    Non-Linear Phase-Shifting of Haar Wavelets for Run-Time All-Frequency Lighting

    Full text link
    This paper focuses on real-time all-frequency image-based rendering using an innovative solution for run-time computation of light transport. The approach is based on new results derived for non-linear phase shifting in the Haar wavelet domain. Although image-based methods for real-time rendering of dynamic glossy objects have been proposed, they do not truly scale to all possible frequencies and high sampling rates without trading storage, glossiness, or computational time, while varying both lighting and viewpoint. This is due to the fact that current approaches are limited to precomputed radiance transfer (PRT), which is prohibitively expensive in terms of memory requirements and real-time rendering when both varying light and viewpoint changes are required together with high sampling rates for high frequency lighting of glossy material. On the other hand, current methods cannot handle object rotation, which is one of the paramount issues for all PRT methods using wavelets. This latter problem arises because the precomputed data are defined in a global coordinate system and encoded in the wavelet domain, while the object is rotated in a local coordinate system. At the root of all the above problems is the lack of efficient run-time solution to the nontrivial problem of rotating wavelets (a non-linear phase-shift), which we solve in this paper

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Ultimate physical limits to computation

    Get PDF
    Computers are physical systems: what they can and cannot do is dictated by the laws of physics. In particular, the speed with which a physical device can process information is limited by its energy and the amount of information that it can process is limited by the number of degrees of freedom it possesses. This paper explores the physical limits of computation as determined by the speed of light cc, the quantum scale â„Ź\hbar and the gravitational constant GG. As an example, quantitative bounds are put to the computational power of an `ultimate laptop' with a mass of one kilogram confined to a volume of one liter.Comment: 22 pages, plain TeX, submitted to Nature, replaced to incorporate additional content and reference

    Distributed Sensor Selection using a Truncated Newton Method

    Full text link
    We propose a new distributed algorithm for computing a truncated Newton method, where the main diagonal of the Hessian is computed using belief propagation. As a case study for this approach, we examine the sensor selection problem, a Boolean convex optimization problem. We form two distributed algorithms. The first algorithm is a distributed version of the interior point method by Joshi and Boyd, and the second algorithm is an order of magnitude faster approximation. As an example application we discuss distributed anomaly detection in networks. We demonstrate the applicability of our solution using both synthetic data and real traffic logs collected from the Abilene Internet backbone.Comment: Submitted for publicatio

    Omega and the time evolution of the N-body problem

    Get PDF
    The series solution of the behavior of a finite number of physical bodies and Chaitin's Omega number share quasi-algorithmic expressions; yet both lack a computable radius of convergence.Comment: Contribution to the collection of papers "Randomness and Complexity, from Leibniz to Chaitin," ed. by Cristian S. Calud

    Chapter 10: Algebraic Algorithms

    Full text link
    Our Chapter in the upcoming Volume I: Computer Science and Software Engineering of Computing Handbook (Third edition), Allen Tucker, Teo Gonzales and Jorge L. Diaz-Herrera, editors, covers Algebraic Algorithms, both symbolic and numerical, for matrix computations and root-finding for polynomials and systems of polynomials equations. We cover part of these large subjects and include basic bibliography for further study. To meet space limitation we cite books, surveys, and comprehensive articles with pointers to further references, rather than including all the original technical papers.Comment: 41.1 page

    PARAVT: Parallel Voronoi Tessellation code

    Full text link
    We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid.Comment: Accepted for publication in Astronomy and Computing. Code available at https://github.com/regonzar/parav
    • …
    corecore