944 research outputs found

    Initial Investigation of Operational Concept Elements for NASA's NextGen-Airportal Project Research

    Get PDF
    The NextGen-Airportal Project is organized into three research focus areas: Safe and Efficient Surface Operations, Coordinated Arrival/Departure Operations Management, and Airportal Transition and Integration Management. The content in this document was derived from an examination of constraints and problems at airports for accommodating future increases in air traffic, and from an examination of capabilities envisioned for NextGen. The concepts are organized around categories of constraints and problems and therefore do not precisely match, but generally reflect, the research focus areas. The concepts provide a framework for defining and coordinating research activities that are, and will be, conducted by the NextGen-Airportal Project. The concepts will help the research activities function as an integrated set focused on future needs for airport operations and will aid aligning the research activities with NextGen key capabilities. The concepts are presented as concept elements with more detailed sub-elements under each concept element. For each concept element, the following topics are discussed: constraints and problems being addressed, benefit descriptions, required technology and infrastructure, and an initial list of potential research topics. Concept content will be updated and more detail added as the research progresses. The concepts are focused on enhancing airportal capacity and efficiency in a timeframe 20 to 25 years in the future, which is similar to NextGen's timeframe

    4D Continuous Descent Operations Supported by an Electronic Flight Bag

    Get PDF
    This paper describes a set of flight simulation experiments carried out with the DLR’s Generic Cockpit Simulator (GECO). A new concept named time and energy managed operations (TEMO), which aims to enable advanced four dimensional (4D) continuous descent operations (CDO), was evaluated after three full days of experiments with qualified pilots. The experiment focused to investigate the possibility of using a 4D-controller on a modern aircraft with unmodified or only slightly modified avionic systems. This was achieved by executing the controller in an Electronic Flight Bag (EFB) and using the pilot to “close the loop” by entering speed and other advisories into the autopilot Flight Control Unit (FCU). The outcome of the experiments include subjective (questionnaires answered by pilots) and objective (trajectory logs) data. Data analysis showed a very good acceptance (both in terms of safety and operability of the procedure) from the participating crews, only with minor suggestions to be improved in future versions of the controller and the speed advisories update rates. Good time accuracy all along the descent trajectory was also observed.Peer ReviewedPostprint (published version

    ATM automation: guidance on human technology integration

    Get PDF
    © Civil Aviation Authority 2016Human interaction with technology and automation is a key area of interest to industry and safety regulators alike. In February 2014, a joint CAA/industry workshop considered perspectives on present and future implementation of advanced automated systems. The conclusion was that whilst no additional regulation was necessary, guidance material for industry and regulators was required. Development of this guidance document was completed in 2015 by a working group consisting of CAA, UK industry, academia and industry associations (see Appendix B). This enabled a collaborative approach to be taken, and for regulatory, industry, and workforce perspectives to be collectively considered and addressed. The processes used in developing this guidance included: review of the themes identified from the February 2014 CAA/industry workshop1; review of academic papers, textbooks on automation, incidents and accidents involving automation; identification of key safety issues associated with automated systems; analysis of current and emerging ATM regulatory requirements and guidance material; presentation of emerging findings for critical review at UK and European aviation safety conferences. In December 2015, a workshop of senior management from project partner organisations reviewed the findings and proposals. EASA were briefed on the project before its commencement, and Eurocontrol contributed through membership of the Working Group.Final Published versio

    A Concept of Operations for Far-Term Surface Trajectory-Based Operations (STBO)

    Get PDF
    The goal of this far-term STBO (Surface Trajectory-Based Operations) ConOps (Concept of Operations) is to increase the efficiency and predictability of airport surface operations, and reduce the environmental impact, by incorporating a time-based component to surface operations. In the far-term NextGen timeframe, airport surface operations will transition from current-day first-come, first-served operations, to strategically scheduled operations in which pilots are recruited as active participants in meeting the precise time-based goals of NextGen surface operations. The far-term STBO concept includes two-phases. Phase 1 introduces time-based traffic flow constraint points, which divide the taxi route into segments with an assigned Required Time of Arrival (RTA). This Phase 1 approach provides temporal certainty only near the traffic flow constraint points, but not in between. Minimal augmentations to the flight deck are required to support required time of arrival (RTA) management. Phase 2 further increases precision and efficiency by introducing full four-dimensional (4D) trajectories, with an x-y location for all times t. This phase assumes adoption of advanced flight deck equipage enabling higher temporal precision sufficient to support aircraft conformance to 4D trajectories. This allows more precision and less temporal uncertainty at all times along the route

    A Potentially Useful for Airborne Separation in 4D-Trajectory ATM Operations

    Get PDF
    An aircraft equipped with Airborne Separation Assistance System functions and 4- dimensional trajectory management capabilities can have significant, potentially transforming, value to Air Traffic Management at the local and system levels. This paper discusses how certain vital characteristics envisioned in the Next Generation Air Transportation System enable some Air Traffic Management functions to be distributed to properly equipped aircraft, and it defines and illustrates this equipage level in a potential application. The new equipage level, perhaps the most capable of many levels permitted, enables an effective implementation of both near- and long-term 4-dimensional trajectory operations in complex airspace, with the aircraft providing the near-term tactical functions and conforming to the long-term trajectory attributes coordinated with ground-based Traffic Flow Management authorities. NASA s recent research and development of this proposed aircraft equipage for en-route and terminal-arrival operations is summarized. The role the equipage level may play in addressing key implementation challenges of reducing ground infrastructure cost, building in security and safety, and scaling to traffic demand is discussed

    Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    Get PDF
    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging development

    Weather Design Considerations for the TASAR Traffic Aware Planner

    Get PDF
    The Traffic Aware Planner (TAP) is a decision support automation tool for trajectory planning and optimization intended for use on todays flight deck. Drawing from a variety of on- and off-board data sources, TAP employs a sophisticated trajectory optimization algorithm that provides the aircrew with fuel- and time-saving reroute recommendations that are free of known conflicts with traffic, special use airspace, and severe convective weather. As this kind of weather is a significant part of the pilots decision-making process while planning trajectory changes en route, a series of investigations has been conducted into the integration of weather data and associated functionality into the TAP software. This paper reviews the weather data sources and functionality that have been incorporated into TAP to date, along with experience gathered in the course of the design process

    Air Traffic Safety: continued evolution or a new Paradigm.

    Get PDF
    The context here is Transport Risk Management. Is the philosophy of Air Traffic Safety different from other modes of transport? – yes, in many ways, it is. The focus is on Air Traffic Management (ATM), covering (eg) air traffic control and airspace structures, which is the part of the aviation system that is most likely to be developed through new paradigms. The primary goal of the ATM system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. What are the past and current methodologies for ATM risk assessment; and will they work effectively for the kinds of future systems that people are now imagining and planning? The title contrasts ‘Continued Evolution’ and a ‘New Paradigm’. How will system designers/operators assure safety with traffic growth and operational/technical changes that are more than continued evolution from the current system? What are the design implications for ‘new paradigms’, such as the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? Achieving and proving safety for NextGen and SESAR is an enormously tough challenge. For example, it will need to cover system resilience, human/automation issues, software/hardware performance/ground/air protection systems. There will be a need for confidence building programmes regarding system design/resilience, eg Human-in-the-Loop simulations with ‘seeded errors’

    Identification and Characterization of Key Human Performance Issues and Research in the Next Generation Air Transportation System (NextGen)

    Get PDF
    This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts

    Impact of Pilot Delay and Non-Responsiveness on the Safety Performance of Airborne Separation

    Get PDF
    Assessing the safety effects of prediction errors and uncertainty on automationsupported functions in the Next Generation Air Transportation System concept of operations is of foremost importance, particularly safety critical functions such as separation that involve human decision-making. Both ground-based and airborne, the automation of separation functions must be designed to account for, and mitigate the impact of, information uncertainty and varying human response. This paper describes an experiment that addresses the potential impact of operator delay when interacting with separation support systems. In this study, we evaluated an airborne separation capability operated by a simulated pilot. The experimental runs are part of the Safety Performance of Airborne Separation (SPAS) experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assistance systems. Pilot actions required by the airborne separation automation to resolve traffic conflicts were delayed within a wide range, varying from five to 240 seconds while a percentage of randomly selected pilots were programmed to completely miss the conflict alerts and therefore take no action. Results indicate that the strategicAirborne Separation Assistance System (ASAS) functions exercised in the experiment can sustain pilot response delays of up to 90 seconds and more, depending on the traffic density. However, when pilots or operators fail to respond to conflict alerts the safety effects are substantial, particularly at higher traffic densities
    corecore