2,970,141 research outputs found

    Challenges and opportunities of context-aware information access

    Get PDF
    Ubiquitous computing environments embedding a wide range of pervasive computing technologies provide a challenging and exciting new domain for information access. Individuals working in these environments are increasingly permanently connected to rich information resources. An appealing opportunity of these environments is the potential to deliver useful information to individuals either from their previous information experiences or external sources. This information should enrich their life experiences or make them more effective in their endeavours. Information access in ubiquitous computing environments can be made "context-aware" by exploiting the wide range context data available describing the environment, the searcher and the information itself. Realizing such a vision of reliable, timely and appropriate identification and delivery of information in this way poses numerous challenges. A central theme in achieving context-aware information access is the combination of information retrieval with multiple dimensions of available context data. Potential context data sources, include the user's current task, inputs from environmental and biometric sensors, associated with the user's current context, previous contexts, and document context, which can be exploited using a variety of technologies to create new and exciting possibilities for information access

    Location-based indexing for mobile context-aware access to a digital library

    Get PDF
    Mobile information systems need to collaborate with each other to provide seamless information access to the user. Information about the user and their context provides the points of contact between the systems. Location is the most basic user context. TIP is a mobile tourist information system that provides location-based access to documents in the digital library Greenstone. This paper identifies the challenges for providing effcient access to location-based information using the various access modes a tourist requires on their travels. We discuss our extended 2DR-tree approach to meet these challenges

    TIP spatial index: efficient access to digital libraries in a context-aware mobile system

    Get PDF
    We present a framework for efficient, uniform, location-based access to digital library collections that are external to a context-aware mobile information system. Using a tourist Information system, we utilize a spatial index to manage the context of location. We show how access to resources from within and outside of the tourist information system can be carried out in a seamless manner. We show how the spatial index can be navigated to continually provide information to the user. An empirical evaluation of the navigation strategy versus traditional spatial searching shows that navigation is efficient and outperforms traditional spatial search. In conclusion, our work provides a strategy for context-aware mobile systems to co-operate with digital libraries in a seamless and efficient manner

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    The role of places and spaces in lifelog retrieval

    Get PDF
    Finding relevant interesting items when searching or browsing within a large multi-modal personal lifelog archive is a significant challenge. The use of contextual cues to filter the collection and aid in the determination of relevant content is often suggested as means to address such challenges. This work presents an exploration of the various locations, garnered through context logging, several participants engaged in during personal information access over a 15 month period. We investigate the implications of the varying data accessed across multiple locations for context-based retrieval from such collections. Our analysis highlights that a large number of spaces and places may be used for information access, but high volume of content is accessed in few

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    Fast Cell Discovery in mm-wave 5G Networks with Context Information

    Full text link
    The exploitation of mm-wave bands is one of the key-enabler for 5G mobile radio networks. However, the introduction of mm-wave technologies in cellular networks is not straightforward due to harsh propagation conditions that limit the mm-wave access availability. Mm-wave technologies require high-gain antenna systems to compensate for high path loss and limited power. As a consequence, directional transmissions must be used for cell discovery and synchronization processes: this can lead to a non-negligible access delay caused by the exploration of the cell area with multiple transmissions along different directions. The integration of mm-wave technologies and conventional wireless access networks with the objective of speeding up the cell search process requires new 5G network architectural solutions. Such architectures introduce a functional split between C-plane and U-plane, thereby guaranteeing the availability of a reliable signaling channel through conventional wireless technologies that provides the opportunity to collect useful context information from the network edge. In this article, we leverage the context information related to user positions to improve the directional cell discovery process. We investigate fundamental trade-offs of this process and the effects of the context information accuracy on the overall system performance. We also cope with obstacle obstructions in the cell area and propose an approach based on a geo-located context database where information gathered over time is stored to guide future searches. Analytic models and numerical results are provided to validate proposed strategies.Comment: 14 pages, submitted to IEEE Transaction on Mobile Computin

    Data collection methods for task-based information access in molecular medicine

    Get PDF
    An important area of improving access to health information is the study of task-based information access in the health domain. This is a significant challenge towards developing focused information retrieval (IR) systems. Due to the complexities of this context, its study requires multiple and often tedious means of data collection, which yields a lot of data for analysis, but also allows triangulation so as to increase the reliability of the findings. In addition to traditional means of data collection, such as questionnaires, interviews and observation, there are novel opportunities provided by lifelogging technologies such as the SenseCam. Together they yield an understanding of information needs, the sources used, and their access strategies. The present paper examines the strengths and weaknesses of the traditional and the more novel means of data collection and addresses the challenges in their application in molecular medicine, which intensively uses digital information sources
    corecore