60,417 research outputs found

    Providing scientific visualisation for spatial data analysis: criteria and an assessment of SAGE

    Get PDF
    A consistent theme in recent work on developing exploratory spatial data analysis (ESDA) has been the importance attached to visualization techniques, particularly following the pioneering development of packages such as REGARD by Haslett et al (1990). The focus on visual techniques is often justified in two ways: (a) the power of modern graphical interfaces means that graphics is no longer a way of simply presenting results in the form of maps or graphs, but a tool for the extraction of information from data; (b)graphical, exploratory methods are felt to be more intuitive for non-specialists to use than methods of numerical spatial statistics enabling wider participation in the process of getting data insights. Despite the importance attached to visualisation techniques, very little work has been done to assess the effectiveness of techniques, either in the wider scientific visualisation community, or among those working with spatial data. This paper will describe a theoretical framework for developing visualisation tools for ESDA that incorporates a data model of what the analyst is looking for based on the concepts of "rough" and "smooth" elements of a data set and a theoretical scheme for assessing visual tools. The paper will include examples of appropriate tools and a commentary on the effectiveness of some existing packages

    The Integration of Coastal Flooding into an ArcFLOOD Data Model

    Get PDF
    With the impact of global climate change, the speedy, intelligent and accessible dissemination of coastal flood predictions from a number of modelling tools at a range of temporal and spatial scales becomes increasingly important for policy decision makers. This thesis provides a novel approach to integrate the coastal flood data into an ArcFLOOD data model to improve the analysis, assessment and mitigation of the potential flood risk in coastal zones. This novel methodology has improved the accessibility, dissemination and visualisation of coastal flood risk. The results were condensed into spatial information flows, data model schematic diagrams and XML schema for end-user extension, customisation and spatial analysis. More importantly, software developers with these applications can now develop rich internet applications with little knowledge of numerical flood modelling systems. Specifically, this work has developed a coastal flooding geodatabase based upon the amalgamation, reconditioning and analysis of numerical flood modelling. In this research, a distinct lack of Geographic Information Systems (GIS) data modelling for coastal flooding prediction was identified in the literature. A schema was developed to provide the linkage between numerical flood modelling, flood risk assessment and information technology (IT) by extending the ESRI ArcGIS Marine Data Model (MDM) to include coastal flooding. The results of a linked hybrid hydrodynamic-morphological numerical flood model were used to define the time-series representation of a coastal flood in the schema. The results generated from GIS spatial analyses have improved the interpretation of numerical flood modelling output by effectively mapping the flood risk in the study site, with an improved definition according to the time-series duration of a flood. The improved results include flood water depth at a point and flood water increase which equates to the difference in significant wave height for each time step of coastal flooding. The flood risk mapping provided has indicated the potential risk to infrastructure and property and depicted the failure of flood defence structures. In the wider context, the results have been provided to allow knowledge transfer to a range of coastal flooding end-users.Natural Environment Research Counci

    Local Binary Patterns as a Feature Descriptor in Alignment-free Visualisation of Metagenomic Data

    Get PDF
    Shotgun sequencing has facilitated the analysis of complex microbial communities. However, clustering and visualising these communities without prior taxonomic information is a major challenge. Feature descriptor methods can be utilised to extract these taxonomic relations from the data. Here, we present a novel approach consisting of local binary patterns (LBP) coupled with randomised singular value decomposition (RSVD) and Barnes-Hut t-stochastic neighbor embedding (BH-tSNE) to highlight the underlying taxonomic structure of the metagenomic data. The effectiveness of our approach is demonstrated using several simulated and a real metagenomic datasets

    Developments in GRworkbench

    Full text link
    The software tool GRworkbench is an ongoing project in visual, numerical General Relativity at The Australian National University. Recently, GRworkbench has been significantly extended to facilitate numerical experimentation in analytically-defined space-times. The numerical differential geometric engine has been rewritten using functional programming techniques, enabling objects which are normally defined as functions in the formalism of differential geometry and General Relativity to be directly represented as function variables in the C++ code of GRworkbench. The new functional differential geometric engine allows for more accurate and efficient visualisation of objects in space-times and makes new, efficient computational techniques available. Motivated by the desire to investigate a recent scientific claim using GRworkbench, new tools for numerical experimentation have been implemented, allowing for the simulation of complex physical situations.Comment: 14 pages. To appear A. Moylan, S.M. Scott and A.C. Searle, Developments in GRworkbench. Proceedings of the Tenth Marcel Grossmann Meeting on General Relativity, editors M. Novello, S. Perez-Bergliaffa and R. Ruffini. Singapore: World Scientific 200

    An environment for studying the impact of spatialising sonified graphs on data comprehension

    Get PDF
    We describe AudioCave, an environment for exploring the impact of spatialising sonified graphs on a set of numerical data comprehension tasks. Its design builds on findings regarding the effectiveness of sonified graphs for numerical data overview and discovery by visually impaired and blind students. We demonstrate its use as a test bed for comparing the approach of accessing a single sonified numerical datum at a time to one where multiple sonified numerical data can be accessed concurrently. Results from this experiment show that concurrent access facilitates the tackling of our set multivariate data comprehension tasks. AudioCave also demonstrates how the spatialisation of the sonified graphs provides opportunities for sharing the representation. We present two experiments investigating users solving set data comprehension tasks collaboratively by sharing the data representation

    The HyperBagGraph DataEdron: An Enriched Browsing Experience of Multimedia Datasets

    Full text link
    Traditional verbatim browsers give back information in a linear way according to a ranking performed by a search engine that may not be optimal for the surfer. The latter may need to assess the pertinence of the information retrieved, particularly when s⋅\cdothe wants to explore other facets of a multi-facetted information space. For instance, in a multimedia dataset different facets such as keywords, authors, publication category, organisations and figures can be of interest. The facet simultaneous visualisation can help to gain insights on the information retrieved and call for further searches. Facets are co-occurence networks, modeled by HyperBag-Graphs -- families of multisets -- and are in fact linked not only to the publication itself, but to any chosen reference. These references allow to navigate inside the dataset and perform visual queries. We explore here the case of scientific publications based on Arxiv searches.Comment: Extension of the hypergraph framework shortly presented in arXiv:1809.00164 (possible small overlaps); use the theoretical framework of hb-graphs presented in arXiv:1809.0019

    Simulation modelling and visualisation: toolkits for building artificial worlds

    Get PDF
    Simulations users at all levels make heavy use of compute resources to drive computational simulations for greatly varying applications areas of research using different simulation paradigms. Simulations are implemented in many software forms, ranging from highly standardised and general models that run in proprietary software packages to ad hoc hand-crafted simulations codes for very specific applications. Visualisation of the workings or results of a simulation is another highly valuable capability for simulation developers and practitioners. There are many different software libraries and methods available for creating a visualisation layer for simulations, and it is often a difficult and time-consuming process to assemble a toolkit of these libraries and other resources that best suits a particular simulation model. We present here a break-down of the main simulation paradigms, and discuss differing toolkits and approaches that different researchers have taken to tackle coupled simulation and visualisation in each paradigm

    Identification of large coherent structures in supersonic axisymmetric wakes

    No full text
    Direct numerical simulation data of supersonic axisymmetric wakes are analysed for the existence of large coherent structures. Wakes at Ma ÂŒ 2:46 are considered with results being presented for cases at Reynolds numbers ReD ÂŒ 30; 000 and 100,000. Criteria for identification of coherent structures in freeshear flows found in the literature are compiled and discussed, and the role of compressibility is addressed. In particular, the ability and reliability of visualisation techniques intended for incompressible shear-flows to educe meaningful structures in supersonic wakes is scrutinised. It is shown that some of these methods retain their usefulness for identification of vortical structures as long as the swirling rate is larger than the local compression and expansion rates in the flow field. As a measure for the validity of this condition in a given flow the ‘vortex compressibility parameter’ is proposed which is derived here. Best ‘visibility’ of coherent structures is achieved by employing visualisation techniques and proper orthogonal decomposition in combination with the introduction of artificial perturbations (forcing of the wake). The existence of both helical and longitudinal structures in the shear layer and of hairpin-like structures in the developing wake is demonstrated. In addition, elongated tubes of streamwise vorticity are observed to emanate from the region of recirculating flo
    • 

    corecore