26,339 research outputs found

    The Multi-way Relay Channel

    Get PDF
    The multiuser communication channel, in which multiple users exchange information with the help of a relay terminal, termed the multi-way relay channel (mRC), is introduced. In this model, multiple interfering clusters of users communicate simultaneously, where the users within the same cluster wish to exchange messages among themselves. It is assumed that the users cannot receive each other's signals directly, and hence the relay terminal in this model is the enabler of communication. In particular, restricted encoders, which ignore the received channel output and use only the corresponding messages for generating the channel input, are considered. Achievable rate regions and an outer bound are characterized for the Gaussian mRC, and their comparison is presented in terms of exchange rates in a symmetric Gaussian network scenario. It is shown that the compress-and-forward (CF) protocol achieves exchange rates within a constant bit offset of the exchange capacity independent of the power constraints of the terminals in the network. A finite bit gap between the exchange rates achieved by the CF and the amplify-and-forward (AF) protocols is also shown. The two special cases of the mRC, the full data exchange model, in which every user wants to receive messages of all other users, and the pairwise data exchange model which consists of multiple two-way relay channels, are investigated in detail. In particular for the pairwise data exchange model, in addition to the proposed random coding based achievable schemes, a nested lattice coding based scheme is also presented and is shown to achieve exchange rates within a constant bit gap of the exchange capacity.Comment: Revised version of our submission to the Transactions on Information Theor

    A digital interface for Gaussian relay and interference networks: Lifting codes from the discrete superposition model

    Full text link
    For every Gaussian network, there exists a corresponding deterministic network called the discrete superposition network. We show that this discrete superposition network provides a near-optimal digital interface for operating a class consisting of many Gaussian networks in the sense that any code for the discrete superposition network can be naturally lifted to a corresponding code for the Gaussian network, while achieving a rate that is no more than a constant number of bits lesser than the rate it achieves for the discrete superposition network. This constant depends only on the number of nodes in the network and not on the channel gains or SNR. Moreover the capacities of the two networks are within a constant of each other, again independent of channel gains and SNR. We show that the class of Gaussian networks for which this interface property holds includes relay networks with a single source-destination pair, interference networks, multicast networks, and the counterparts of these networks with multiple transmit and receive antennas. The code for the Gaussian relay network can be obtained from any code for the discrete superposition network simply by pruning it. This lifting scheme establishes that the superposition model can indeed potentially serve as a strong surrogate for designing codes for Gaussian relay networks. We present similar results for the K x K Gaussian interference network, MIMO Gaussian interference networks, MIMO Gaussian relay networks, and multicast networks, with the constant gap depending additionally on the number of antennas in case of MIMO networks.Comment: Final versio

    The Degrees-of-Freedom of Multi-way Device-to-Device Communications is Limited by 2

    Full text link
    A 3-user device-to-device (D2D) communications scenario is studied where each user wants to send and receive a message from each other user. This scenario resembles a 3-way communication channel. The capacity of this channel is unknown in general. In this paper, a sum-capacity upper bound that characterizes the degrees-of-freedom of the channel is derived by using genie-aided arguments. It is further shown that the derived upper bound is achievable within a gap of 2 bits, thus leading to an approximate sum-capacity characterization for the 3-way channel. As a by-product, interesting analogies between multi-way communications and multi-way relay communications are concluded.Comment: 5 pages, ISIT 201

    On the Capacity Region of the Two-user Interference Channel with a Cognitive Relay

    Full text link
    This paper considers a variation of the classical two-user interference channel where the communication of two interfering source-destination pairs is aided by an additional node that has a priori knowledge of the messages to be transmitted, which is referred to as the it cognitive relay. For this Interference Channel with a Cognitive Relay (ICCR) In particular, for the class of injective semi-deterministic ICCRs, a sum-rate upper bound is derived for the general memoryless ICCR and further tightened for the Linear Deterministic Approximation (LDA) of the Gaussian noise channel at high SNR, which disregards the noise and focuses on the interaction among the users' signals. The capacity region of the symmetric LDA is completely characterized except for the regime of moderately weak interference and weak links from the CR to the destinations. The insights gained from the analysis of the LDA are then translated back to the symmetric Gaussian noise channel (GICCR). For the symmetric GICCR, an approximate characterization (to within a constant gap) of the capacity region is provided for a parameter regime where capacity was previously unknown. The approximately optimal scheme suggests that message cognition at a relay is beneficial for interference management as it enables simultaneous over the air neutralization of the interference at both destinations

    Capacity Bounds for a Class of Interference Relay Channels

    Full text link
    The capacity of a class of Interference Relay Channels (IRC) -the Injective Semideterministic IRC where the relay can only observe one of the sources- is investigated. We first derive a novel outer bound and two inner bounds which are based on a careful use of each of the available cooperative strategies together with the adequate interference decoding technique. The outer bound extends Telatar and Tse's work while the inner bounds contain several known results in the literature as special cases. Our main result is the characterization of the capacity region of the Gaussian class of IRCs studied within a fixed number of bits per dimension -constant gap. The proof relies on the use of the different cooperative strategies in specific SNR regimes due to the complexity of the schemes. As a matter of fact, this issue reveals the complex nature of the Gaussian IRC where the combination of a single coding scheme for the Gaussian relay and interference channel may not lead to a good coding scheme for this problem, even when the focus is only on capacity to within a constant gap over all possible fading statistics.Comment: 23 pages, 6 figures. Submitted to IEEE Transactions on Information Theory (revised version

    Incremental Relaying for the Gaussian Interference Channel with a Degraded Broadcasting Relay

    Full text link
    This paper studies incremental relay strategies for a two-user Gaussian relay-interference channel with an in-band-reception and out-of-band-transmission relay, where the link between the relay and the two receivers is modelled as a degraded broadcast channel. It is shown that generalized hash-and-forward (GHF) can achieve the capacity region of this channel to within a constant number of bits in a certain weak relay regime, where the transmitter-to-relay link gains are not unboundedly stronger than the interference links between the transmitters and the receivers. The GHF relaying strategy is ideally suited for the broadcasting relay because it can be implemented in an incremental fashion, i.e., the relay message to one receiver is a degraded version of the message to the other receiver. A generalized-degree-of-freedom (GDoF) analysis in the high signal-to-noise ratio (SNR) regime reveals that in the symmetric channel setting, each common relay bit can improve the sum rate roughly by either one bit or two bits asymptotically depending on the operating regime, and the rate gain can be interpreted as coming solely from the improvement of the common message rates, or alternatively in the very weak interference regime as solely coming from the rate improvement of the private messages. Further, this paper studies an asymmetric case in which the relay has only a single single link to one of the destinations. It is shown that with only one relay-destination link, the approximate capacity region can be established for a larger regime of channel parameters. Further, from a GDoF point of view, the sum-capacity gain due to the relay can now be thought as coming from either signal relaying only, or interference forwarding only.Comment: To appear in IEEE Trans. on Inf. Theor
    • …
    corecore