25,256 research outputs found

    The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction

    Get PDF
    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex

    Network Uncertainty Informed Semantic Feature Selection for Visual SLAM

    Full text link
    In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection can help ensure that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates semantic segmentation and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state and the joint entropy of the state, given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. Each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. This selection strategy generates a sparse map which can facilitate long-term localization. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to the baseline method while reducing the map size by almost 70%.Comment: Published in: 2019 16th Conference on Computer and Robot Vision (CRV

    Learning Timbre Analogies from Unlabelled Data by Multivariate Tree Regression

    Get PDF
    This is the Author's Original Manuscript of an article whose final and definitive form, the Version of Record, has been published in the Journal of New Music Research, November 2011, copyright Taylor & Francis. The published article is available online at http://www.tandfonline.com/10.1080/09298215.2011.596938
    • …
    corecore