1,831,453 research outputs found

    Analisis Pengaruh Quality, Image, Brand Equity, dan Value terhadap Loyalitas Seller sebagai Salah Satu Partner E-marketplace di Lazada Indonesia

    Full text link
    Penelitian ini bertujuan untuk mengetahui pengaruh dari beberapa faktor yaitu quality, image, brand equity dan value terhadap loyalitas seller sebagai salah satu partner e-marketplace di Lazada Indonesia. Sampel diambil dengan menggunakan metode purposive sampling, dengan jumlah sampel sebanyak 82 responden. Teknik pengumpulan data menggunakan kuesioner dan literatur. Metode analisis yang digunakan adalah metode analisis regresi berganda untuk mengetahui pengaruh antara variabel-variabel bebas terhadap variabel terikat. Hasil penelitian ini menunjukkan bahwa; 1). Kualitas e-marketplace tidak berpengaruh positif dan siginifikan terhadap loyalitas seller 2). Citra Perusahaan penyedia e-marketplace berpengaruh positif dan signifikan terhadap loyalitas seller 3). Ekuitas brand Perusahaan e-marketplace berpengaruh positif dan signifikan terhadap loyalitas seller 4). Nilai yang dimiliki oleh Perusahaan e-marketplace berpengaruh positif dan signifikan terhadap loyalitas seller 5). Kualitas Pelayanan, citra Perusahaan, ekuitas brand dan nilai Perusahaan secara bersama-sama berpengaruh positif dan signifikan terhadap loyalitas seller sebagai salah satu partner e-marketplace di Lazada Indonesia. Loyalitas seller sebagai salah satu partner e-marketplace di Lazada Indonesia terbukti dipengaruhi oleh keempat variabel yang diteliti yaitu sebesar 74% dan sisanya 26% dipengaruhi oleh faktor atau variabel-variabel lainnya.Kata Kunci: Quality, Image, Brand Equity, Value, Loyalitas Seller2 This study aims to determine the effect of e-service quality, image, brand equity, and value to seller's loyalty as a partner in Lazada Indonesia e-marketplace. Samples were taken by using purposive sampling method, with the total number of sample is 82 respondents. The technique of collecting data is using questionnaires and literatures. The analytical method that used in this research is multiple regression analysis to determine the effect of independent variables on the dependent variable. The results of this study indicate that; 1). E-service quality does not affect significantly on seller's loyalty. 2). Image has a possitive and significant effect on seller's loyalty. 3). Brand Equity has a possitive and significant effect on seller's loyalty. 4). Value has a possitive and significant effect on seller's loyalty. 5). E-Service quality, value, brand equity, and value jointly has a positive and significant effect on seller's loyalty as a partner in Lazada Indonesia e-marketplace. The seller's loyalty shown to be affected by the independent variables in this study at 74% and 26% is influenced by other factors or variables.Keywords: Quality, Image, Brand Equity, Value, Seller's Loyalty DAFTAR PUSTAKA Arikunto, Suharsimi. 2006. Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Rineka Cipta. Aydın Erdal, and Savrul Burcu Kilinç, 2014. The Relationship between Globalization and E-Commerce: Turkish Case, Procedia - Social and Behavioral Sciences 150 1267 – 1276 Bresolles Grégory, Durrieu François, Senecal Sylvain. 2014. A consumer typology based on e-service quality and e-satisfaction. Journal of Retailing and Consumer Services 21, 889–896 Brunn Peter, Jensen Martin, Skovgaard Jakob. 2002. e-Marketplaces: Crafting A Winning Strategy. European Management Journal Vol. 20, No. 3, pp. 286–298 Cunha. 2012. An E-marketplace of Healthcare and Social Care Services: the perceived interest. Procedia Technology 5, 959 – 966 Chi Hsin Kuang, Yeh Huery Ren, Yang Ya Ting. 2009. The Impact of Brand Awareness on Consumer Purchase Intention: The Mediating Effect of Perceived Quality and Brand Loyalty. The Journal of International Management Studies, Volume 4, Number 1 Chien Shu-Hua, Chen Ying-Hueih, Hsu Chin-Yen. 2012. Exploring the impact of trust and relational embeddedness in e-marketplaces: An empirical study in Taiwan. Industrial Marketing Management 41, 460–468 Chircu Alina.M., Mahajan Vijay. 2006. Managing electronic commerce retail transaction costs for customer value. Decision Support Systems 42, 898– 914 D'ambra John, Ramburuth, Prem., & Vatanasakdakul, Savanid. 2010. IT Doesn't Fit! The Influence of Culture on B2B in Thailand. Journal of Global Information Technology Management (Ivy League Publishing). 10-38 Ghozali, Imam. 2006. Aplikasi Analisis Multivariate dengan Sess. Cetakan Keempat. Semarang: Badan Penerbit Universitas Diponogoro ------------------. 2011. Aplikasi Analisis Multivariate dengan Program IBM SPSS19, Badan Penerbit Universitas Diponegoro, Semarang. ------------------. 2005. Aplikasi Analisis Multivariate Dengan Program SPSS. Semarang: UNDIP Goes Paulo, Tu Yanbin, Tung Y.Alex. 2013. Seller heterogeneity in electronic marketplaces: A study of new and experienced sellers in eBay. Decision Support Systems 56, 247–258 Gunasekaran, A., Marri, H. B., McGaughey, R. E., & Nebhwani, M. D. 2002. E-Commerce and its impact on operations management. International Journal of Production Economics, 75,185–197. Hashemi Malayeri, B dan Bastani, F.2000. An introduction to the Internet and the World Wide Web, Part I, Journal of Medical Sciences, TarbiatModarres University, Summer 77, Issue 1, pp. 111. Ho Shu-Chun, and Kauffman Robert.J. 2010. Internet-based selling technology and e-commerce growth: a hybrid growth theory approach with cross-model inference. Inf Technol Manag, 12:409–429 Hong Ilyoo B. 2015. Understanding the consumer's online merchant selection process: The roles of product involvement, perceived risk, and trust expectation. International Journal of Information Management 35, 322–336 Janita M.Soledad, and Miranda F.Javier. 2013. The antecedents of client loyalty in business-to-business (B2B) electronic marketplaces. Industrial Marketing Management 42 814–823 Juntunen Mari, Juntunen Jouni, Juga Jari. 2010. Corporate brand equity and loyalty in B2B markets: A study amonglogistics service purchasers. Macmillan Publishers Ltd. Brand Management Vol. 18, 4/5, 300–311 Malhotra, Naresh, dan Birks, David, 2007. Marketing Research: An Applied Orientation 3rd Edition. London: Practice Hall Nam Janghyeon, Ekinci Yuksel, Whyatt Georgina. 2011. Brand Equity, Brand Loyalty and Consumer Satisfaction. Annals of Tourism Research, Vol. 38, No. 3, pp. 1009–1030 Parasuraman, A., Zeithaml, V. A., & Malhotra, A. (2005). E-S-QUAL a multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(3), 213–233. Pradiani, Theresia. 2014. Pengaruh Trait Competitiveness Terhadap Sales Performance (Studi Kasus di PT Allianz Life Indonesia). Jurnal JIBEKA, volume 8, 55 – 62. Rauyruen Papassapa, Miller Kenneth.E, Groth Markus. 2009. B2B services: linking service loyalty and brand equity, Journal of Service Marketing 23/3 175–186 Rayport, Jeffrey F and Jaworski, Bernard J. 2002. Introduction to E-commerce. Mcgraw Hill Rong Huang and Emine Sarigollu. 2011. How Brand Awareness Relates to Market Outcome, Brand Equity and the Marketing Mix. Journal of Business Research, vol.65, pp.92-99. S. Muylle, A. Basu, 2008. Online support for business processes by electronic intermediaries, Decision Support Systems 45 (4) 845–857. Savrul Mesut, Incekara Ahmet, Sener Sefer. 2014. The Potential of E-Commerce for SMEs in a Globalizing Business Environment, Procedia - Social and Behavioral Sciences 150 35 – 45 Sekaran, Uma, Bougie, Roger, 2010. Research methods for business: a skill building approach. Bandung: Alfabeta Severi Erfan, and Ling Kwek Choon. 2013. The Mediating Effects of Brand Association, Brand Loyalty, Brand Image and Perceived Quality on Brand Equity, Asian Social Science; Vol. 9, No. 3; 2013 Sugiyono. 2002. Metode Penelitian Administrasi. Bandung: CV Alfabeta ------------. 2008. Metode Penelitian Bisnis. Cetakan Keduabelas. Bandung: Alfabeta -----------. 2010. Metode Penelitian Kuantitatif Kualitatif & RND. Bandung: Alfabeta Syuhada Ahmad Anshorimuslim, dan Gambetta Windy. 2013. Online Marketplace for Indonesian Micro Small and Medium Enterprises Based on Social Media. Procedia Technology 11, 446 – 454 Tabachnick BG dan Fidel L.S, 2007. “Using Multivariate Statistic” (Fifth Edition) USA: Pearson Eduction Inc. Umar, Husein. 200. Metodologi Penelitian Untuk Skripsi dan Tesis Bisnis, Jakarta: PT. Gramedia Pustaka. White, A., Daniel, E., Ward, J., & Wilson, H., 2007. The adoption of consortium B2B emarketplaces: An exploratory study. Journal of Strategic Information Systems, 16, 71–103. Wu, Jen-Her., & Hisa, Tzyh-lih. 2004. Analysis of E-commerce innovation and impact: a hypercube model, Electronic Commerce Research and Applications Volume 3, Issue 4, Pages 389–404 Wang Shan, and Archer Norm. 2007. Business-to-business collaboration through electronic marketplaces: An exploratory study. Journal of Purchasing & Supply Management 13 113–126 Zhao Jing, Wang Shan, Huang Wilfred.V. 2008. A study of B2B e-market in China: E-commerce process perspective. Information & Management 45, 242–248 Zhao Kexin, Xia Mu, Shaw Michael.J., Subramaniam Chandrasekar. 2009. The sustainability of B2B e-marketplaces: Ownership structure, market competition, and prior buyer–seller connections. Decision Support Systems 47, 105–114 Zikmund, William G. 2003. Customer Relationship Management: Integrating Marketing Strategy and Information Technology. New Jersey: John Wiley and Sons Zuo Wenming, Huang Qiuping, Fan Chang, Zhang Zhenpeng. 2013. Quality management of B2C e-commerce service based on human factors engineering, Electronic Commerce Research and Applications 12, 309–32

    Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location

    Full text link
    [EN] A large volume of the water produced for public supply is lost in the systems between sources and consumers. An important-in many cases the greatest-fraction of these losses are physical losses, mainly related to leaks and bursts in pipes and in consumer connections. Fast detection and location of bursts plays an important role in the design of operation strategies for water loss control, since this helps reduce the volume lost from the instant the event occurs until its effective repair (run time). The transient pressure signals caused by bursts contain important information about their location and magnitude, and stamp on any of these events a specific "hydraulic signature". The present work proposes and evaluates three methods to disaggregate transient signals, which are used afterwards to train artificial neural networks (ANNs) to identify burst locations and calculate the leaked flow. In addition, a clustering process is also used to group similar signals, and then train specific ANNs for each group, thus improving both the computational efficiency and the location accuracy. The proposed methods are applied to two real distribution networks, and the results show good accuracy in burst location and characterization.Manzi, D.; Brentan, BM.; Meirelles, G.; Izquierdo Sebastián, J.; Luvizotto Jr., E. (2019). Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location. Water. 11(11):1-13. https://doi.org/10.3390/w11112279S1131111Creaco, E., & Walski, T. (2017). Economic Analysis of Pressure Control for Leakage and Pipe Burst Reduction. Journal of Water Resources Planning and Management, 143(12), 04017074. doi:10.1061/(asce)wr.1943-5452.0000846Campisano, A., Creaco, E., & Modica, C. (2010). RTC of Valves for Leakage Reduction in Water Supply Networks. Journal of Water Resources Planning and Management, 136(1), 138-141. doi:10.1061/(asce)0733-9496(2010)136:1(138)Campisano, A., Modica, C., Reitano, S., Ugarelli, R., & Bagherian, S. (2016). Field-Oriented Methodology for Real-Time Pressure Control to Reduce Leakage in Water Distribution Networks. Journal of Water Resources Planning and Management, 142(12), 04016057. doi:10.1061/(asce)wr.1943-5452.0000697Vítkovský, J. P., Simpson, A. R., & Lambert, M. F. (2000). Leak Detection and Calibration Using Transients and Genetic Algorithms. Journal of Water Resources Planning and Management, 126(4), 262-265. doi:10.1061/(asce)0733-9496(2000)126:4(262)Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., & Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157-1167. doi:10.1016/j.conengprac.2011.06.004Jung, D., & Kim, J. (2017). Robust Meter Network for Water Distribution Pipe Burst Detection. Water, 9(11), 820. doi:10.3390/w9110820Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-environment Research, 2(4), 212-227. doi:10.1016/j.jher.2009.02.003Choi, D., Kim, S.-W., Choi, M.-A., & Geem, Z. (2016). Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System. Water, 8(4), 142. doi:10.3390/w8040142Christodoulou, S. E., Kourti, E., & Agathokleous, A. (2016). Waterloss Detection in Water Distribution Networks using Wavelet Change-Point Detection. Water Resources Management, 31(3), 979-994. doi:10.1007/s11269-016-1558-5Guo, X., Yang, K., & Guo, Y. (2012). Leak detection in pipelines by exclusively frequency domain method. Science China Technological Sciences, 55(3), 743-752. doi:10.1007/s11431-011-4707-3Holloway, M. B., & Hanif Chaudhry, M. (1985). Stability and accuracy of waterhammer analysis. Advances in Water Resources, 8(3), 121-128. doi:10.1016/0309-1708(85)90052-1Sanz, G., Pérez, R., Kapelan, Z., & Savic, D. (2016). Leak Detection and Localization through Demand Components Calibration. Journal of Water Resources Planning and Management, 142(2), 04015057. doi:10.1061/(asce)wr.1943-5452.0000592Zhang, Q., Wu, Z. Y., Zhao, M., Qi, J., Huang, Y., & Zhao, H. (2016). Leakage Zone Identification in Large-Scale Water Distribution Systems Using Multiclass Support Vector Machines. Journal of Water Resources Planning and Management, 142(11), 04016042. doi:10.1061/(asce)wr.1943-5452.0000661Mounce, S. R., & Machell, J. (2006). Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water Journal, 3(1), 21-31. doi:10.1080/15730620600578538Covas, D., Ramos, H., & de Almeida, A. B. (2005). Standing Wave Difference Method for Leak Detection in Pipeline Systems. Journal of Hydraulic Engineering, 131(12), 1106-1116. doi:10.1061/(asce)0733-9429(2005)131:12(1106)Liggett, J. A., & Chen, L. (1994). Inverse Transient Analysis in Pipe Networks. Journal of Hydraulic Engineering, 120(8), 934-955. doi:10.1061/(asce)0733-9429(1994)120:8(934)Caputo, A. C., & Pelagagge, P. M. (2002). An inverse approach for piping networks monitoring. Journal of Loss Prevention in the Process Industries, 15(6), 497-505. doi:10.1016/s0950-4230(02)00036-0Van Zyl, J. E. (2014). Theoretical Modeling of Pressure and Leakage in Water Distribution Systems. Procedia Engineering, 89, 273-277. doi:10.1016/j.proeng.2014.11.187Izquierdo, J., & Iglesias, P. . (2004). Mathematical modelling of hydraulic transients in complex systems. Mathematical and Computer Modelling, 39(4-5), 529-540. doi:10.1016/s0895-7177(04)90524-9Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144. doi:10.1007/s10618-007-0064-zNavarrete-López, C., Herrera, M., Brentan, B., Luvizotto, E., & Izquierdo, J. (2019). Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework. Water, 11(2), 246. doi:10.3390/w11020246Meirelles, G., Manzi, D., Brentan, B., Goulart, T., & Luvizotto, E. (2017). Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks. Water Resources Management, 31(13), 4339-4351. doi:10.1007/s11269-017-1750-2Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40. doi:10.1016/j.jhydrol.2011.06.013Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Hybrid SOM+ k -Means clustering to improve planning, operation and management in water distribution systems. Environmental Modelling & Software, 106, 77-88. doi:10.1016/j.envsoft.2018.02.013Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3(1), 1-27. doi:10.1080/0361092740882710

    On potential cognitive abilities in the machine kingdom

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11023-012-9299-6Animals, including humans, are usually judged on what they could become, rather than what they are. Many physical and cognitive abilities in the ‘animal kingdom’ are only acquired (to a given degree) when the subject reaches a certain stage of development, which can be accelerated or spoilt depending on how the environment, training or education is. The term ‘potential ability’ usually refers to how quick and likely the process of attaining the ability is. In principle, things should not be different for the ‘machine kingdom’. While machines can be characterised by a set of cognitive abilities, and measuring them is already a big challenge, known as ‘universal psychometrics’, a more informative, and yet more challenging, goal would be to also determine the potential cognitive abilities of a machine. In this paper we investigate the notion of potential cognitive ability for machines, focussing especially on universality and intelligence. We consider several machine characterisations (non-interactive and interactive) and give definitions for each case, considering permanent and temporal potentials. From these definitions, we analyse the relation between some potential abilities, we bring out the dependency on the environment distribution and we suggest some ideas about how potential abilities can be measured. Finally, we also analyse the potential of environments at different levels and briefly discuss whether machines should be designed to be intelligent or potentially intelligent.We thank the anonymous reviewers for their comments, which have helped to significantly improve this paper. This work was supported by the MEC-MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT. Finally, we thank three pioneers ahead of their time(s). We thank Ray Solomonoff (1926-2009) and Chris Wallace (1933-2004) for all that they taught us, directly and indirectly. And, in his centenary year, we thank Alan Turing (1912-1954), with whom it perhaps all began.Hernández-Orallo, J.; Dowe, DL. (2013). On potential cognitive abilities in the machine kingdom. Minds and Machines. 23(2):179-210. https://doi.org/10.1007/s11023-012-9299-6S179210232Amari, S., Fujita, N., Shinomoto, S. (1992). Four types of learning curves. Neural Computation 4(4), 605–618.Aristotle (Translation, Introduction, and Commentary by Ross, W.D.) (1924). Aristotle’s Metaphysics. Oxford: Clarendon Press.Barmpalias, G. & Dowe, D. L. (2012). Universality probability of a prefix-free machine. Philosophical transactions of the Royal Society A [Mathematical, Physical and Engineering Sciences] (Phil Trans A), Theme Issue ‘The foundations of computation, physics and mentality: The Turing legacy’ compiled and edited by Barry Cooper and Samson Abramsky, 370, pp 3488–3511.Chaitin, G. J. (1966). On the length of programs for computing finite sequences. Journal of the Association for Computing Machinery, 13, 547–569.Chaitin, G. J. (1975). A theory of program size formally identical to information theory. Journal of the ACM (JACM), 22(3), 329–340.Dowe, D. L. (2008, September). Foreword re C. S. Wallace. Computer Journal, 51(5):523–560, Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L. (2011). MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: P. S. Bandyopadhyay, M. R. Forster (Eds), Handbook of the philosophy of science—Volume 7: Philosophy of statistics (pp. 901–982). Amsterdam: Elsevier.Dowe, D. L. & Hajek, A. R. (1997a). A computational extension to the turing test. Technical report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp, http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html .Dowe, D. L. & Hajek, A. R. (1997b, September). A computational extension to the Turing Test. in Proceedings of the 4th conference of the Australasian Cognitive Science Society, University of Newcastle, NSW, Australia, 9 pp.Dowe, D. L. & Hajek, A. R. (1998, February). A non-behavioural, computational extension to the Turing Test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106.Dowe, D. L., Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: Implications of a quantitative analysis. In Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13124–13131.Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(4), 120–123.Goertzel, B. & Bugaj, S. V. (2009). AGI preschool: A framework for evaluating early-stage human-like AGIs. In Proceedings of the second international conference on artificial general intelligence (AGI-09), pp 31–36.Hernández-Orallo, J. (2000a). Beyond the Turing Test. Journal of Logic, Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000b). On the computational measurement of intelligence factors. In A. Meystel (Ed), Performance metrics for intelligent systems workshop (pp 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2010). On evaluating agent performance in a fixed period of time. In M. Hutter et al. (Eds.), Proceedings of 3rd international conference on artificial general intelligence (pp. 25–30). New York: Atlantis Press.Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J. & Dowe, D. L. (2011, April). Mammals, machines and mind games. Who’s the smartest?. The conversation, http://theconversation.edu.au/mammals-machines-and-mind-games-whos-the-smartest-566 .Hernández-Orallo J., Dowe D. L., España-Cubillo S., Hernández-Lloreda M. V., & Insa-Cabrera J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In: J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), Artificial general intelligence 2011, volume 6830, LNAI series, pp. 82–91. New York: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2012a, March). Measuring cognitive abilities of machines, humans and non-human animals in a unified way: towards universal psychometrics. Technical report 2012/267, Faculty of Information Technology, Clayton School of I.T., Monash University, Australia.Hernández-Orallo, J., Insa, J., Dowe, D. L., & Hibbard, B. (2012b). Turing tests with Turing machines. In A. Voronkov (Ed.), The Alan Turing centenary conference, Turing-100, Manchester, volume 10 of EPiC Series, pp 140–156.Hernández-Orallo, J., & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of the international symposium of engineering of intelligent systems (EIS’98) (pp 146–163). Switzerland: ICSC Press.Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 1360–1366.Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21(1), 102–110.Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of educational psychology, 57(5), 253.Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer.Insa-Cabrera, J., Dowe, D. L., España, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011a). Comparing humans and AI agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp 122–132. Springer, New York.Insa-Cabrera, J., Dowe, D. L., & Hernández-Orallo, J. (2011b). Evaluating a reinforcement learning algorithm with a general intelligence test. In CAEPIA—Lecture Notes in Artificial Intelligence (LNAI), volume 7023, pages 1–11. Springer, New York.Kearns, M. & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning, 49(2), 209–232.Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7.Legg, S. (2008, June). Machine super intelligence. Department of Informatics, University of Lugano.Legg, S. & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Legg, S., & Veness, J. (2012). An approximation of the universal intelligence measure. In Proceedings of Solomonoff 85th memorial conference. New York: Springer.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Li, M., Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed). New York: Springer.Little, V. L., & Bailey, K. G. (1972). Potential intelligence or intelligence test potential? A question of empirical validity. Journal of Consulting and Clinical Psychology, 39(1), 168.Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In Proceedings of the national conference on artificial intelligence, AAAI (pp. 486–502). New Jersey: Wiley.Mahrer, A. R. (1958). Potential intelligence: A learning theory approach to description and clinical implication. The Journal of General Psychology, 59(1), 59–71.Oppy, G., & Dowe, D. L. (2011). The Turing Test. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford University. http://plato.stanford.edu/entries/turing-test/ .Orseau, L. & Ring, M. (2011). Self-modification and mortality in artificial agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pages 1–10. Springer, New York.Ring, M. & Orseau, L. (2011). Delusion, survival, and intelligent agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp. 11–20. Springer, New York.Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., et al. (2007). Checkers is solved. Science, 317(5844), 1518.Solomonoff, R. J. (1962). Training sequences for mechanized induction. In M. Yovits, G. Jacobi, & G. Goldsteins (Eds.), Self-Organizing Systems, 7, 425–434.Solomonoff, R. J. (1964). A formal theory of inductive inference. Information and Control, 7(1–22), 224–254.Solomonoff, R. J. (1967). Inductive inference research: Status, Spring 1967. RTB 154, Rockford Research, Inc., 140 1/2 Mt. Auburn St., Cambridge, Mass. 02138, July 1967.Solomonoff, R. J. (1978). Complexity-based induction systems: comparisons and convergence theorems. IEEE Transactions on Information Theory, 24(4), 422–432.Solomonoff, R. J. (1984). Perfect training sequences and the costs of corruption—A progress report on induction inference research. Oxbridge research.Solomonoff, R. J. (1985). The time scale of artificial intelligence: Reflections on social effects. Human Systems Management, 5, 149–153.Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: The MIT press.Thorp, T. R., & Mahrer, A. R. (1959). Predicting potential intelligence. Journal of Clinical Psychology, 15(3), 286–288.Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.Veness, J., Ng, K. S., Hutter, M., & Silver, D. (2011). A Monte Carlo AIXI approximation. Journal of Artificial Intelligence Research, JAIR, 40, 95–142.Wallace, C. S. (2005). Statistical and inductive inference by minimum message length. New York: Springer.Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computer Journal, 11, 185–194.Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283.Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4), 330–337.Woergoetter, F., & Porr, B. (2008). Reinforcement learning. Scholarpedia, 3(3), 1448.Zvonkin, A. K., & Levin, L. A. (1970). The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys, 25, 83–124

    Sustainable Higher Education Development through Technology Enhanced Learning

    Full text link
    [EN] Higher education is incorporating Information and Communication Technology (ICT) at a fast rate for different purposes. Scientific papers include within the concept of Technology Enhanced Learning (TEL) the myriad applications of information and communication technology, e-resources, and pedagogical approaches to the development of education. TEL¿s specific application to higher education is especially relevant for countries under rapid development for providing quick and sustainable access to quality education (UN sustainable development goal 4). This paper presents the research results of an online pedagogical experience in collaborative academic research for analyzing good practice in TEL-supported higher education development. The results are obtained through a pilot implementation providing curated data on TEL competency¿s development of faculty skills and analysis of developing sustainable higher education degrees through TEL cooperation, for capacity building. Given the increased volume and complexity of the knowledge to be delivered, and the exponential growth of the need for skilled workers in emerging economies, online training is the most effective way of delivering a sustainable higher education. The results of the PETRA Erasmus+ capacity-building project provides evidence of a successful implementation of a TEL-supported methodology for collaborative faculty development focused on future online degrees built collaboratively and applied locally.This research was co-funded by the European Commission through the Erasmus+ KA2 project "Promoting Excellence in Teaching and Learning in Azerbaijani Universities (PETRA)" project number 573630-EPP-1-2016-1-ES-EPPKA2-CBHE-JP.Orozco-Messana, J.; Martínez-Rubio, J.; Gonzálvez-Pons, AM. (2020). Sustainable Higher Education Development through Technology Enhanced Learning. Sustainability. 12(9):1-13. https://doi.org/10.3390/su12093600S113129Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238-256. doi:10.1016/j.chb.2015.11.036Becker, H. J., & Ravitz, J. (1999). The Influence of Computer and Internet Use on Teachers’ Pedagogical Practices and Perceptions. Journal of Research on Computing in Education, 31(4), 356-384. doi:10.1080/08886504.1999.10782260Mumford, S., & Dikilitaş, K. (2020). Pre-service language teachers reflection development through online interaction in a hybrid learning course. Computers & Education, 144, 103706. doi:10.1016/j.compedu.2019.103706Lee, D., Watson, S. L., & Watson, W. R. (2020). The Relationships Between Self-Efficacy, Task Value, and Self-Regulated Learning Strategies in Massive Open Online Courses. The International Review of Research in Open and Distributed Learning, 21(1), 23-39. doi:10.19173/irrodl.v20i5.4389Passey, D. (2019). Technology‐enhanced learning: Rethinking the term, the concept and its theoretical background. British Journal of Educational Technology, 50(3), 972-986. doi:10.1111/bjet.12783Lai, Y.-C., & Peng, L.-H. (2019). Effective Teaching and Activities of Excellent Teachers for the Sustainable Development of Higher Design Education. Sustainability, 12(1), 28. doi:10.3390/su12010028Lee, S., Lee, H., & Kim, T. (2018). A Study on the Instructor Role in Dealing with Mixed Contents: How It Affects Learner Satisfaction and Retention in e-Learning. Sustainability, 10(3), 850. doi:10.3390/su10030850“Continuous Improvement in Teaching Strategies through Lean Principles”. Teaching & Learning Symposium, University of Southern Indiana http://hdl.handle.net/20.500.12419/455The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. (2003). Journal of Management Information Systems, 19(4), 9-30. doi:10.1080/07421222.2003.11045748Goodman, J., Melkers, J., & Pallais, A. (2019). Can Online Delivery Increase Access to Education? Journal of Labor Economics, 37(1), 1-34. doi:10.1086/698895Alexander, J., Barcellona, M., McLachlan, S., & Sackley, C. (2019). Technology-enhanced learning in physiotherapy education: Student satisfaction and knowledge acquisition of entry-level students in the United Kingdom. Research in Learning Technology, 27(0). doi:10.25304/rlt.v27.2073How Can Adaptive Platforms Improve Student Learning Outcomes? A Case Study of Open Educational Resources and Adaptive Learning Platforms https://ssrn.com/abstract=3478134Sun, A., & Chen, X. (2016). Online Education and Its Effective Practice: A Research Review. Journal of Information Technology Education: Research, 15, 157-190. doi:10.28945/3502EU Commission https://ec.europa.eu/education/education-in-the-eu/digital-education-action-plan_enEssence Project https://husite.nl/essence/Orozco-Messana, J., de la Poza-Plaza, E., & Calabuig-Moreno, R. (2020). Experiences in Transdisciplinary Education for the Sustainable Development of the Built Environment, the ISAlab Workshop. Sustainability, 12(3), 1143. doi:10.3390/su12031143Kurilovas, E., & Kubilinskiene, S. (2020). Lithuanian case study on evaluating suitability, acceptance and use of IT tools by students – An example of applying Technology Enhanced Learning Research methods in Higher Education. Computers in Human Behavior, 107, 106274. doi:10.1016/j.chb.2020.10627

    On environment difficulty and discriminating power

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-014-9257-1This paper presents a way to estimate the difficulty and discriminating power of any task instance. We focus on a very general setting for tasks: interactive (possibly multiagent) environments where an agent acts upon observations and rewards. Instead of analysing the complexity of the environment, the state space or the actions that are performed by the agent, we analyse the performance of a population of agent policies against the task, leading to a distribution that is examined in terms of policy complexity. This distribution is then sliced by the algorithmic complexity of the policy and analysed through several diagrams and indicators. The notion of environment response curve is also introduced, by inverting the performance results into an ability scale. We apply all these concepts, diagrams and indicators to two illustrative problems: a class of agent-populated elementary cellular automata, showing how the difficulty and discriminating power may vary for several environments, and a multiagent system, where agents can become predators or preys, and may need to coordinate. Finally, we discuss how these tools can be applied to characterise (interactive) tasks and (multi-agent) environments. These characterisations can then be used to get more insight about agent performance and to facilitate the development of adaptive tests for the evaluation of agent abilities.I thank the reviewers for their comments, especially those aiming at a clearer connection with the field of multi-agent systems and the suggestion of better approximations for the calculation of the response curves. The implementation of the elementary cellular automata used in the environments is based on the library 'CellularAutomaton' by John Hughes for R [58]. I am grateful to Fernando Soler-Toscano for letting me know about their work [65] on the complexity of 2D objects generated by elementary cellular automata. I would also like to thank David L. Dowe for his comments on a previous version of this paper. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT, and the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).José Hernández-Orallo (2015). On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems. 29(3):402-454. https://doi.org/10.1007/s10458-014-9257-1S402454293Anderson, J., Baltes, J., & Cheng, C. T. (2011). Robotics competitions as benchmarks for ai research. The Knowledge Engineering Review, 26(01), 11–17.Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. In Proceedings of the National Conference on Artificial Intelligence (pp. 119–125). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Antunes, L., Fortnow, L., van Melkebeek, D., & Vinodchandran, N. V. (2006). Computational depth: Concept and applications. Theoretical Computer Science, 354(3), 391–404. Foundations of Computation Theory (FCT 2003), 14th Symposium on Fundamentals of Computation Theory 2003.Arai, K., Kaminka, G. A., Frank, I., & Tanaka-Ishii, K. (2003). Performance competitions as research infrastructure: Large scale comparative studies of multi-agent teams. Autonomous Agents and Multi-Agent Systems, 7(1–2), 121–144.Ashcraft, M. H., Donley, R. D., Halas, M. A., & Vakali, M. (1992). Chapter 8 working memory, automaticity, and problem difficulty. In Jamie I.D. Campbell (Ed.), The nature and origins of mathematical skills, volume 91 of advances in psychology (pp. 301–329). North-Holland.Ay, N., Müller, M., & Szkola, A. (2010). Effective complexity and its relation to logical depth. IEEE Transactions on Information Theory, 56(9), 4593–4607.Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35(10), 1373–1380.Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak using Jason. London: Wiley. com.Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S. et al. (2000). Decision-theoretic, high-level agent programming in the situation calculus. In Proceedings of the National Conference on Artificial Intelligence (pp. 355–362). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(2), 156–172.Chaitin, G. J. (1977). Algorithmic information theory. IBM Journal of Research and Development, 21, 350–359.Chedid, F. B. (2010). Sophistication and logical depth revisited. In 2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA) (pp. 1–4). IEEE.Cheeseman, P., Kanefsky, B. & Taylor, W. M. (1991). Where the really hard problems are. In Proceedings of IJCAI-1991 (pp. 331–337).Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and Multi-agent Systems, 16(3), 214–248.Delahaye, J. P. & Zenil, H. (2011). Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation, 219(1), 63–77Dowe, D. L. (2008). Foreword re C. S. Wallace. Computer Journal, 51(5), 523–560. Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L., & Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Du, D. Z., & Ko, K. I. (2011). Theory of computational complexity (Vol. 58). London: Wiley-Interscience.Elo, A. E. (1978). The rating of chessplayers, past and present (Vol. 3). London: Batsford.Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. London: Lawrence Erlbaum.Fatès, N. & Chevrier, V. (2010). How important are updating schemes in multi-agent systems? an illustration on a multi-turmite model. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1 (pp. 533–540). International Foundation for Autonomous Agents and Multiagent Systems.Ferber, J. & Müller, J. P. (1996). Influences and reaction: A model of situated multiagent systems. In Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96) (pp. 72–79).Ferrando, P. J. (2009). Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Applied Psychological Measurement, 33(1), 9–24.Ferrando, P. J. (2012). Assessing the discriminating power of item and test scores in the linear factor-analysis model. Psicológica, 33, 111–139.Gent, I. P., & Walsh, T. (1994). Easy problems are sometimes hard. Artificial Intelligence, 70(1), 335–345.Gershenson, C. & Fernandez, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.Gruner, S. (2010). Mobile agent systems and cellular automata. Autonomous Agents and Multi-agent Systems, 20(2), 198–233.Hardman, D. K., & Payne, S. J. (1995). Problem difficulty and response format in syllogistic reasoning. The Quarterly Journal of Experimental Psychology, 48(4), 945–975.He, J., Reeves, C., Witt, C., & Yao, X. (2007). A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evolutionary Computation, 15(4), 435–443.Hernández-Orallo, J. (2000). Beyond the turing test. Journal of Logic Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000). On the computational measurement of intelligence factors. In A. Meystel (Ed.), Performance metrics for intelligent systems workshop (pp. 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2000). Thesis: Computational measures of information gain and reinforcement in inference processes. AI Communications, 13(1), 49–50.Hernández-Orallo, J. (2010). A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In M. Hutter et al. (Ed.), 3rd International Conference on Artificial General Intelligence (pp. 182–183). Atlantis Press Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf .Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Insa-Cabrera, J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 82–91). Berlin: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2014). Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research, 27, 50–74.Hernández-Orallo, J., Insa, J., Dowe, D. L. & Hibbard, B. (2012). Turing tests with turing machines. In A. Voronkov (Ed.), The Alan Turing Centenary Conference, Turing-100, Manchester, 2012, volume 10 of EPiC Series (pp. 140–156).Hernández-Orallo, J. & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of International Symposium of Engineering of Intelligent Systems (EIS’98) (pp. 146–163). ICSC Press.Hibbard, B. (2009). Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence, 1(1), 54–61.Hoos, H. H. (1999). Sat-encodings, search space structure, and local search performance. In 1999 International Joint Conference on Artificial Intelligence (Vol. 16, pp. 296–303).Insa-Cabrera, J., Benacloch-Ayuso, J. L., & Hernández-Orallo, J. (2012). On measuring social intelligence: Experiments on competition and cooperation. In J. Bach, B. Goertzel, & M. Iklé (Eds.), AGI, volume 7716 of lecture notes in computer science (pp. 126–135). Berlin: Springer.Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011). Comparing humans and AI agents. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 122–132). Berlin: Springer.Knuth, D. E. (1973). Sorting and searching, volume 3 of the art of computer programming. Reading, MA: Addison-Wesley.Kotovsky, K., & Simon, H. A. (1990). What makes some problems really hard: Explorations in the problem space of difficulty. Cognitive Psychology, 22(2), 143–183.Legg, S. (2008). Machine super intelligence. PhD thesis, Department of Informatics, University of Lugano, June 2008.Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Leonetti, M. & Iocchi, L. (2010). Improving the performance of complex agent plans through reinforcement learning. In Proceedings of the 2010 International Conference on Autonomous Agents and Multiagent Systems (Vol. 1, pp. 723–730). International Foundation for Autonomous Agents and Multiagent Systems.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Levin, L. A. (1986). Average case complete problems. SIAM Journal on Computing, 15, 285.Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). Berlin: Springer.Low, C. K., Chen, T. Y., & Rónnquist, R. (1999). Automated test case generation for bdi agents. Autonomous Agents and Multi-agent Systems, 2(4), 311–332.Madden, M. G., & Howley, T. (2004). Transfer of experience between reinforcement learning environments with progressive difficulty. Artificial Intelligence Review, 21(3), 375–398.Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological Bulletin, 115(2), 300.Michel, F. (2004). Formalisme, outils et éléments méthodologiques pour la modélisation et la simulation multi-agents. PhD thesis, Université des sciences et techniques du Languedoc, Montpellier.Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.Orponen, P., Ko, K. I., Schöning, U., & Watanabe, O. (1994). Instance complexity. Journal of the ACM (JACM), 41(1), 96–121.Simon, H. A., & Kotovsky, K. (1963). Human acquisition of concepts for sequential patterns. Psychological Review, 70(6), 534.Team, R., et al. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Whiteson, S., Tanner, B., & White, A. (2010). The reinforcement learning competitions. The AI Magazine, 31(2), 81–94.Wiering, M., & van Otterlo, M. (Eds.). (2012). Reinforcement learning: State-of-the-art. Berlin: Springer.Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.Zatuchna, Z., & Bagnall, A. (2009). Learning mazes with aliasing states: An LCS algorithm with associative perception. Adaptive Behavior, 17(1), 28–57.Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1–28.Zenil, H. (2011). Une approche expérimentale à la théorie algorithmique de la complexité. PhD thesis, Dissertation in fulfilment of the degree of Doctor in Computer Science, Université de Lille.Zenil, H., Soler-Toscano, F., Delahaye, J. P. & Gauvrit, N. (2012). Two-dimensional kolmogorov complexity and validation of the coding theorem method by compressibility. arXiv, preprint arXiv:1212.6745

    Алгоритмічне та програмне забезпечення комп’ютерного бачення на прикладі сфери масового обслуговування

    Get PDF
    Актуальність теми: необхідність розпізнавати небажаних осіб та вік, стать і емоційний стан відвідувачів об’єктів сфери масового обслуговування із фото та відеофайлів з камер спостереження. Мета дослідження: аналіз методів ідентифікації осіб за фото та відеофайлами та отримання іх біометричного шаблону. Для реалізації поставленої мети були сформульовані наступні завдання: дослідження існуючих способів розпізнавання осіб та їх біометричного шаблону у сфері масового обслуговування; дослідження існуючих технічних способів ідентифікації осіб; підбір архітектури бекбоунів для нейронної мережі моделі розпізнавання; підбір навчальних датасетів для тренування моделі розпізнавання; розробка програмного забезпечення, яке використовує спроектовану модель розпізнавання; порівняння результатів реалізованої моделі з існуючими засобами ідентифікації осіб. Об’єкт дослідження: процес ідентифікації особи по обличчю та отримання її біометричного шаблону за допомогою методів машинного навчання. Предмет дослідження: точність та ефективність алгоритмів комп’ютерного бачення для обробки фото та відео з наявною великою кількістю осіб. Методи дослідження: дослідження, аналіз, експеримент. Наукова новизна: найбільш суттєвими науковими результатами магістерської дисертації є реалізація унікального програмного модулю для ідентифікації осіб та отримання їх біометричного шаблону за допомогою сучасних алгоритмів комп’ютерного бачення. Практичне значення отриманих результатів визначається тим, що запропоноване програмне рішення може бути використане на об’єктах сфери масового обслуговування для визначення злочинців та емоційного стану відвідувачів. Зв’язок роботи з науковими програмами, планами, темами: Робота виконувалась на кафедрі автоматизованих систем обробки інформації та управління Національного технічного університету України «Київський політехнічний інститут ім. Ігоря Сікорського» в рамках теми «Методи та технології високопродуктивних обчислень та обробки надвеликих масивів даних». Державний реєстраційний номер 0117U000924. Апробація: Основні положення роботи доповідались і обговорювались на Міжнародному науковому симпозіумі "Інтелектуальні рішення" (IntSol-2019), публікувались у науково-технічного журналі “Сучачний захист інформації” 4(36), 2018, виданні “Захист інформації”, том 21, №3, виданні “Magyar Tudomanyos Journal” №31(2019). Публікації: Наукові положення дисертації опубліковані в матеріалах Міжнародного наукового симпозіума "Інтелектуальні рішення" (IntSol- 2019), науково-технічного журналу “Сучачний захист інформації” 4(36), 2018, видання “Захист інформації”, том 21, №3, видання “Magyar Tudomanyos Journal” №31(2019).Topic relevance: the need to recognize unwanted people and the age, gender and emotional state of visitors of retail locations from photos and videos from surveillance cameras. Research purpose: to analyze the methods of identification of persons by photos and videos and to obtain their biometric portrait. To achieve this goal, the following tasks were formulated: research of existing ways of identifying persons and their biometric pattern in queuing; study of existing technical means of identification of persons; selection of the backbone architecture for the neural network recognition model; selection of training datasets for training model recognition; development of software that uses a designed recognition model; comparison of the results of the implemented model with the existing means of identification of persons. Research object: the process of identifying a person by face and obtaining his biometric template using machine learning methods. Research subject: the accuracy and effectiveness of computer vision algorithms for processing multiple-person photos and videos. Research methods: research, analysis, experiment. Scientific Novelty: the most significant scientific result of a master's thesis is the implementation of a unique software module for identifying individuals and obtaining their biometric template using modern computer vision algorithms. The practical significance of the results obtained is determined by the fact that the proposed algorithmic and software solution can be used in queuing facilities to identify criminals and emotional state of visitors. Relationship with working with scientific programs, plans, topics: The work was performed at the Department of Automated Information Processing and Management Systems of the National Technical University of Ukraine «Kyiv Polytechnic Institute Igor Sikorsky” within the topic “Methods and technologies of high-performance computing and processing of large data sets”. State Registration Number 0117U000924. Testing: The main points of the work were reported and discussed at the International Scientific Symposium "Intelligent Solutions" (IntSol-2019), published in the scientific and technical journal "Modern information protection" 4 (36), 2018, publication "Information protection", volume 21, no. 3, editions of “Magyar Tudomanyos Journal” No. 31 (2019). Publications: Scientific Provisions of the Dissertation Published in Materials of the International Scientific Symposium "Intelligent Solutions" (IntSol-2019), Scientific and Technical Journal "Modern Information Protection" 4 (36), 2018, "Information Security", Volume 21, No.3, Edition “Magyar Tudomanyos Journal” No. 31 (2019)

    Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs

    Full text link
    [EN] Currently, the management of water networks is key to increase their sustainability. This fact implies that water managers have to develop tools that ease the decision-making process in order to improve the efficiency of irrigation networks, as well as their exploitation costs. The present research proposes a mathematical programming model to optimize the selection of the water sources and the volume over time in water networks, minimizing the operation costs as a function of the water demand and the reservoir capacity. The model, which is based on fuzzy methods, improves the evaluation performed by water managers when they have to decide about the acquisition of the water resources under uncertain costs. Different fuzzy solution approaches have been applied and assessed in terms of model complexity and computational efficiency, showing the solution accomplished for each one. A comparison between different methods was applied in a real water network, reaching a 20% total cost reduction for the best solution.Sanchis, R.; Díaz-Madroñero Boluda, FM.; López Jiménez, PA.; Pérez-Sánchez, M. (2019). Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs. Water. 11(12):1-22. https://doi.org/10.3390/w11122432S1221112Biswas, A. K. (2004). Integrated Water Resources Management: A Reassessment. Water International, 29(2), 248-256. doi:10.1080/02508060408691775Pahl-Wostl, C. (2006). Transitions towards adaptive management of water facing climate and global change. Water Resources Management, 21(1), 49-62. doi:10.1007/s11269-006-9040-4Wu, K., & Zhang, L. (2014). Progress in the Development of Environmental Risk Assessment as a Tool for the Decision-Making Process. Journal of Service Science and Management, 07(02), 131-143. doi:10.4236/jssm.2014.72011Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water, 9(3), 213. doi:10.3390/w9030213Hunink, J., Simons, G., Suárez-Almiñana, S., Solera, A., Andreu, J., Giuliani, M., … Bastiaanssen, W. (2019). A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins. Water, 11(10), 1976. doi:10.3390/w11101976Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234Corominas, J. (2010). Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del agua, 17(3). doi:10.4995/ia.2010.2977Romero, L., Pérez-Sánchez, M., & Amparo López-Jiménez, P. (2017). Improvement of sustainability indicators when traditional water management changes: a case study in Alicante (Spain). AIMS Environmental Science, 4(3), 502-522. doi:10.3934/environsci.2017.3.502Davies, E. G. R., & Simonovic, S. P. (2011). Global water resources modeling with an integrated model of the social–economic–environmental system. Advances in Water Resources, 34(6), 684-700. doi:10.1016/j.advwatres.2011.02.010ALCAMO, J., DÖLL, P., HENRICHS, T., KASPAR, F., LEHNER, B., RÖSCH, T., & SIEBERT, S. (2003). Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal, 48(3), 317-337. doi:10.1623/hysj.48.3.317.45290Sanchis, R., & Poler, R. (2019). Enterprise Resilience Assessment—A Quantitative Approach. Sustainability, 11(16), 4327. doi:10.3390/su11164327Rahaman, M. M., & Varis, O. (2005). Integrated water resources management: evolution, prospects and future challenges. Sustainability: Science, Practice and Policy, 1(1), 15-21. doi:10.1080/15487733.2005.11907961Markantonis, V., Reynaud, A., Karabulut, A., El Hajj, R., Altinbilek, D., Awad, I. M., … Bidoglio, G. (2019). Can the Implementation of the Water-Energy-Food Nexus Support Economic Growth in the Mediterranean Region? The Current Status and the Way Forward. Frontiers in Environmental Science, 7. doi:10.3389/fenvs.2019.00084Food and Agriculture Organization (FAO)www.fao.orgDirective 2000/60/EC of the European Parliament and of the Councilhttps://eur-lex.europa.eu/eli/dir/2000/60/ojNamany, S., Al-Ansari, T., & Govindan, R. (2019). Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. Journal of Cleaner Production, 225, 610-626. doi:10.1016/j.jclepro.2019.03.304Archibald, T. W., & Marshall, S. E. (2018). Review of Mathematical Programming Applications in Water Resource Management Under Uncertainty. Environmental Modeling & Assessment, 23(6), 753-777. doi:10.1007/s10666-018-9628-0Chen, S., Shao, D., Gu, W., Xu, B., Li, H., & Fang, L. (2017). An interval multistage water allocation model for crop different growth stages under inputs uncertainty. Agricultural Water Management, 186, 86-97. doi:10.1016/j.agwat.2017.03.001Xie, Y. L., Xia, D. H., Huang, G. H., Li, W., & Xu, Y. (2015). A multistage stochastic robust optimization model with fuzzy probability distribution for water supply management under uncertainty. Stochastic Environmental Research and Risk Assessment, 31(1), 125-143. doi:10.1007/s00477-015-1164-8Heumesser, C., Fuss, S., Szolgayová, J., Strauss, F., & Schmid, E. (2012). Investment in Irrigation Systems under Precipitation Uncertainty. Water Resources Management, 26(11), 3113-3137. doi:10.1007/s11269-012-0053-xPereira-Cardenal, S. J., Mo, B., Riegels, N. D., Arnbjerg-Nielsen, K., & Bauer-Gottwein, P. (2015). Optimization of Multipurpose Reservoir Systems Using Power Market Models. Journal of Water Resources Planning and Management, 141(8), 04014100. doi:10.1061/(asce)wr.1943-5452.0000500Kumari, S., & Mujumdar, P. P. (2017). Fuzzy Set–Based System Performance Evaluation of an Irrigation Reservoir System. Journal of Irrigation and Drainage Engineering, 143(5), 04017002. doi:10.1061/(asce)ir.1943-4774.0001155Jairaj, P. G., & Vedula, S. (2000). Water Resources Management, 14(6), 457-472. doi:10.1023/a:1011117918943Li, M., Guo, P., Singh, V. P., & Zhao, J. (2016). Irrigation Water Allocation Using an Inexact Two-Stage Quadratic Programming with Fuzzy Input under Climate Change. JAWRA Journal of the American Water Resources Association, 52(3), 667-684. doi:10.1111/1752-1688.12415Bozorg-Haddad, O., Malmir, M., Mohammad-Azari, S., & Loáiciga, H. A. (2016). Estimation of farmers’ willingness to pay for water in the agricultural sector. Agricultural Water Management, 177, 284-290. doi:10.1016/j.agwat.2016.08.011Raju, K. S., & Duckstein, L. (2003). Multiobjective fuzzy linear programming for sustainable irrigation planning: an Indian case study. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 7(6), 412-418. doi:10.1007/s00500-002-0230-6Regulwar, D. G., & Gurav, J. B. (2012). Sustainable Irrigation Planning with Imprecise Parameters under Fuzzy Environment. Water Resources Management, 26(13), 3871-3892. doi:10.1007/s11269-012-0109-yMula, J., Poler, R., & Garcia-Sabater, J. P. (2008). Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. International Journal of Production Research, 46(20), 5589-5606. doi:10.1080/00207540701413912Díaz-Madroñero, M., Mula, J., Jiménez, M., & Peidro, D. (2016). A rolling horizon approach for material requirement planning under fuzzy lead times. International Journal of Production Research, 55(8), 2197-2211. doi:10.1080/00207543.2016.1223382Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157(1), 74-97. doi:10.1016/j.fss.2005.05.045Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. doi:10.1016/j.fss.2006.11.003Díaz-Madroñero, M., Mula, J., & Jiménez, M. (2014). Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. International Journal of Production Research, 52(23), 6971-6988. doi:10.1080/00207543.2014.920115Pérez-Sánchez, M., Díaz-Madroñero, M., Díaz-Madroñero, D.-M., … Josefa, J. (2017). Mathematical Programming Model for Procurement Selection in Water Irrigation Systems. A Case Study. Journal of Engineering Science and Technology Review, 10(6), 154-162. doi:10.25103/jestr.106.19Herrera, F., & Verdegay, J. L. (1995). Three models of fuzzy integer linear programming. European Journal of Operational Research, 83(3), 581-593. doi:10.1016/0377-2217(93)e0338-xHerrera, F., & Verdegay, J. L. (1996). Fuzzy boolean programming problems with fuzzy costs: A general study. Fuzzy Sets and Systems, 81(1), 57-76. doi:10.1016/0165-0114(94)00324-6Alavidoost, M. H., Babazadeh, H., & Sayyari, S. T. (2016). An interactive fuzzy programming approach for bi-objective straight and U-shaped assembly line balancing problem. Applied Soft Computing, 40, 221-235. doi:10.1016/j.asoc.2015.11.025Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24(2), 143-161. doi:10.1016/0020-0255(81)90017-7Lai, Y.-J., & Hwang, C.-L. (1992). A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems, 49(2), 121-133. doi:10.1016/0165-0114(92)90318-xZimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-3Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B-141-B-164. doi:10.1287/mnsc.17.4.b14

    Recreating Daily life in Pompeii

    Full text link
    [EN] We propose an integrated Mixed Reality methodology for recreating ancient daily life that features realistic simulations of animated virtual human actors (clothes, body, skin, face) who augment real environments and re-enact staged storytelling dramas. We aim to go further from traditional concepts of static cultural artifacts or rigid geometrical and 2D textual augmentations and allow for 3D, interactive, augmented historical character-based event representations in a mobile and wearable setup. This is the main contribution of the described work as well as the proposed extensions to AR Enabling technologies: a VR/AR character simulation kernel framework with real-time, clothed virtual humans that are dynamically superimposed on live camera input, animated and acting based on a predefined, historically correct scenario. We demonstrate such a real-time case study on the actual site of ancient Pompeii.The work presented has been supported by the Swiss Federal Office for Education and Science and the EU IST programme, in frame of the EU IST LIFEPLUS 34545 and EU ICT INTERMEDIA 38417 projects.Magnenat-Thalmann, N.; Papagiannakis, G. (2010). Recreating Daily life in Pompeii. Virtual Archaeology Review. 1(2):19-23. https://doi.org/10.4995/var.2010.4679OJS192312P. MILGRAM, F. KISHINO, (1994) "A Taxonomy of Mixed Reality Visual Displays", IEICE Trans. Information Systems, vol. E77-D, no. 12, pp. 1321-1329R. AZUMA, Y. BAILLOT, R. BEHRINGER, S. FEINER, S. JULIER, B. MACINTYRE, (2001) "Recent Advances in Augmented Reality", IEEE Computer Graphics and Applications, November/December http://dx.doi.org/10.1109/38.963459D. STRICKER, P. DÄHNE, F. SEIBERT, I. CHRISTOU, L. ALMEIDA, N. IOANNIDIS, (2001) "Design and Development Issues for ARCHEOGUIDE: An Augmented Reality-based Cultural Heritage On-site Guide", EuroImage ICAV 3D Conference in Augmented Virtual Environments and Three-dimensional Imaging, Mykonos, Greece, 30 May-01 JuneW. WOHLGEMUTH, G. TRIEBFÜRST, (2000)"ARVIKA: augmented reality for development, production and service", DARE 2000 on Designing augmented reality environments, Elsinore, Denmark http://dx.doi.org/10.1145/354666.354688H. TAMURA, H. YAMAMOTO, A. KATAYAMA, (2001) "Mixed reality: Future dreams seen at the border between real and virtual worlds", Computer Graphics and Applications, vol.21, no.6, pp.64-70 http://dx.doi.org/10.1109/38.963462M. PONDER, G. PAPAGIANNAKIS, T. MOLET, N. MAGNENAT-THALMANN, D. THALMANN, (2003) "VHD++ Development Framework: Towards Extendible, Component Based VR/AR Simulation Engine Featuring Advanced Virtual Character Technologies", IEEE Computer Society Press, CGI Proceedings, pp. 96-104 http://dx.doi.org/10.1109/cgi.2003.1214453Archaeological Superintendence of Pompeii (2009), http://www.pompeiisites.orgG. PAPAGIANNAKIS, S. SCHERTENLEIB, B. O'KENNEDY , M. POIZAT, N.MAGNENAT-THALMANN, A. STODDART, D.THALMANN, (2005) "Mixing Virtual and Real scenes in the site of ancient Pompeii",Journal of CAVW, p 11-24, Volume 16, Issue 1, John Wiley and Sons Ltd, FebruaryEGGES, A., PAPAGIANNAKIS, G., MAGNENAT-THALMANN, N., (2007) "Presence and Interaction in Mixed Reality", The Visual Computer, Springer-Verlag Volume 23, Number 5, MaySEO H., MAGNENAT-THALMANN N. (2003), An Automatic Modeling of Human Bodies from Sizing Parameters. In ACM SIGGRAPH, Symposium on Interactive 3D Graphics, pp19-26, pp234. http://dx.doi.org/10.1145/641480.641487VOLINO P., MAGNENAT-THALMANN N. (2006), Resolving Surface Collisions through Intersection Contour Minimization. In ACM Transactions on Graphics (Siggraph 2006 proceedings), 25(3), pp 1154-1159. http://dx.doi.org/10.1145/1179352.1142007http://dx.doi.org/10.1145/1141911.1142007PAPAGIANNAKIS, G., SINGH, G., MAGNENAT-THALMANN, N., (2008) "A survey of mobile and wireless technologies for augmented reality systems", Journal of Computer Animation and Virtual Worlds, John Wiley and Sons Ltd, 19, 1, pp. 3-22, February http://dx.doi.org/10.1002/cav.22
    corecore