2,947 research outputs found

    Information Storage in the Stochastic Ising Model

    Full text link
    Most information systems store data by modifying the local state of matter, in the hope that atomic (or sub-atomic) local interactions would stabilize the state for a sufficiently long time, thereby allowing later recovery. In this work we initiate the study of information retention in locally-interacting systems. The evolution in time of the interacting particles is modeled via the stochastic Ising model (SIM). The initial spin configuration X0X_0 serves as the user-controlled input. The output configuration XtX_t is produced by running tt steps of the Glauber chain. Our main goal is to evaluate the information capacity In(t)maxpX0I(X0;Xt)I_n(t)\triangleq\max_{p_{X_0}}I(X_0;X_t) when the time tt scales with the size of the system nn. For the zero-temperature SIM on the two-dimensional n×n\sqrt{n}\times\sqrt{n} grid and free boundary conditions, it is easy to show that In(t)=Θ(n)I_n(t) = \Theta(n) for t=O(n)t=O(n). In addition, we show that on the order of n\sqrt{n} bits can be stored for infinite time in striped configurations. The n\sqrt{n} achievability is optimal when tt\to\infty and nn is fixed. One of the main results of this work is an achievability scheme that stores more than n\sqrt{n} bits (in orders of magnitude) for superlinear (in nn) times. The analysis of the scheme decomposes the system into Ω(n)\Omega(\sqrt{n}) independent Z-channels whose crossover probability is found via the (recently rigorously established) Lifshitz law of phase boundary movement. We also provide results for the positive but small temperature regime. We show that an initial configuration drawn according to the Gibbs measure cannot retain more than a single bit for tecn14+ϵt\geq e^{cn^{\frac{1}{4}+\epsilon}}. On the other hand, when scaling time with β\beta, the stripe-based coding scheme (that stores for infinite time at zero temperature) is shown to retain its bits for time that is exponential in β\beta

    Retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks

    Get PDF
    The retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks are derived and studied in replica-symmetric mean-field theory generalizing earlier works on either the fully connected or the symmetrical extremely diluted network. Capacity-gain parameter phase diagrams are obtained for the Q=3, Q=4 and Q=Q=\infty state networks with uniformly distributed patterns of low activity in order to search for the effects of a gradual dilution of the synapses. It is shown that enlarged regions of continuous changeover into a region of optimal performance are obtained for finite stochastic noise and small but finite connectivity. The de Almeida-Thouless lines of stability are obtained for arbitrary connectivity, and the resulting phase diagrams are used to draw conclusions on the behavior of symmetrically diluted networks with other pattern distributions of either high or low activity.Comment: 21 pages, revte

    Thouless-Anderson-Palmer equation for analog neural network with temporally fluctuating white synaptic noise

    Full text link
    Effects of synaptic noise on the retrieval process of associative memory neural networks are studied from the viewpoint of neurobiological and biophysical understanding of information processing in the brain. We investigate the statistical mechanical properties of stochastic analog neural networks with temporally fluctuating synaptic noise, which is assumed to be white noise. Such networks, in general, defy the use of the replica method, since they have no energy concept. The self-consistent signal-to-noise analysis (SCSNA), which is an alternative to the replica method for deriving a set of order parameter equations, requires no energy concept and thus becomes available in studying networks without energy functions. Applying the SCSNA to stochastic network requires the knowledge of the Thouless-Anderson-Palmer (TAP) equation which defines the deterministic networks equivalent to the original stochastic ones. The study of the TAP equation which is of particular interest for the case without energy concept is very few, while it is closely related to the SCSNA in the case with energy concept. This paper aims to derive the TAP equation for networks with synaptic noise together with a set of order parameter equations by a hybrid use of the cavity method and the SCSNA.Comment: 13 pages, 3 figure

    Synchronous versus sequential updating in the three-state Ising neural network with variable dilution

    Full text link
    The three-state Ising neural network with synchronous updating and variable dilution is discussed starting from the appropriate Hamiltonians. The thermodynamic and retrieval properties are examined using replica mean-field theory. Capacity-temperature phase diagrams are derived for several values of the pattern activity and different gradations of dilution, and the information content is calculated. The results are compared with those for sequential updating. The effect of self-coupling is established. Also the dynamics is studied using the generating function technique for both synchronous and sequential updating. Typical flow diagrams for the overlap order parameter are presented. The differences with the signal-to-noise approach are outlined.Comment: 21 pages Latex, 12 eps figures and 1 ps figur

    Near-optimal protocols in complex nonequilibrium transformations

    Get PDF
    The development of sophisticated experimental means to control nanoscale systems has motivated efforts to design driving protocols which minimize the energy dissipated to the environment. Computational models are a crucial tool in this practical challenge. We describe a general method for sampling an ensemble of finite-time, nonequilibrium protocols biased towards a low average dissipation. We show that this scheme can be carried out very efficiently in several limiting cases. As an application, we sample the ensemble of low-dissipation protocols that invert the magnetization of a 2D Ising model and explore how the diversity of the protocols varies in response to constraints on the average dissipation. In this example, we find that there is a large set of protocols with average dissipation close to the optimal value, which we argue is a general phenomenon.Comment: 6 pages and 3 figures plus 4 pages and 5 figures of supplemental materia
    corecore