42 research outputs found

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Learning understandable classifier models.

    Get PDF
    The topic of this dissertation is the automation of the process of extracting understandable patterns and rules from data. An unprecedented amount of data is available to anyone with a computer connected to the Internet. The disciplines of Data Mining and Machine Learning have emerged over the last two decades to face this challenge. This has led to the development of many tools and methods. These tools often produce models that make very accurate predictions about previously unseen data. However, models built by the most accurate methods are usually hard to understand or interpret by humans. In consequence, they deliver only decisions, and are short of any explanations. Hence they do not directly lead to the acquisition of new knowledge. This dissertation contributes to bridging the gap between the accurate opaque models and those less accurate but more transparent for humans. This dissertation first defines the problem of learning from data. It surveys the state-of-the-art methods for supervised learning of both understandable and opaque models from data, as well as unsupervised methods that detect features present in the data. It describes popular methods of rule extraction from unintelligible models which rewrite them into an understandable form. Limitations of rule extraction are described. A novel definition of understandability which ties computational complexity and learning is provided to show that rule extraction is an NP-hard problem. Next, a discussion whether one can expect that even an accurate classifier has learned new knowledge. The survey ends with a presentation of two approaches to building of understandable classifiers. On the one hand, understandable models must be able to accurately describe relations in the data. On the other hand, often a description of the output of a system in terms of its input requires the introduction of intermediate concepts, called features. Therefore it is crucial to develop methods that describe the data with understandable features and are able to use those features to present the relation that describes the data. Novel contributions of this thesis follow the survey. Two families of rule extraction algorithms are considered. First, a method that can work with any opaque classifier is introduced. Artificial training patterns are generated in a mathematically sound way and used to train more accurate understandable models. Subsequently, two novel algorithms that require that the opaque model is a Neural Network are presented. They rely on access to the network\u27s weights and biases to induce rules encoded as Decision Diagrams. Finally, the topic of feature extraction is considered. The impact on imposing non-negativity constraints on the weights of a neural network is considered. It is proved that a three layer network with non-negative weights can shatter any given set of points and experiments are conducted to assess the accuracy and interpretability of such networks. Then, a novel path-following algorithm that finds robust sparse encodings of data is presented. In summary, this dissertation contributes to improved understandability of classifiers in several tangible and original ways. It introduces three distinct aspects of achieving this goal: infusion of additional patterns from the underlying pattern distribution into rule learners, the derivation of decision diagrams from neural networks, and achieving sparse coding with neural networks with non-negative weights

    Intelligent Data Mining using Kernel Functions and Information Criteria

    Get PDF
    Radial Basis Function (RBF) Neural Networks and Support Vector Machines (SVM) are two powerful kernel related intelligent data mining techniques. The current major problems with these methods are over-fitting and the existence of too many free parameters. The way to select the parameters can directly affect the generalization performance(test error) of theses models. Current practice in how to choose the model parameters is an art, rather than a science in this research area. Often, some parameters are predetermined, or randomly chosen. Other parameters are selected through repeated experiments that are time consuming, costly, and computationally very intensive. In this dissertation, we provide a two-stage analytical hybrid-training algorithm by building a bridge among regression tree, EM algorithm, and Radial Basis Function Neural Networks together. Information Complexity (ICOMP) criterion of Bozdogan along with other information based criteria are introduced and applied to control the model complexity, and to decide the optimal number of kernel functions. In the first stage of the hybrid, regression tree and EM algorithm are used to determine the kernel function parameters. In the second stage of the hybrid, the weights (coefficients) are calculated and information criteria are scored. Kernel Principal Component Analysis (KPCA) using EM algorithm for feature selection and data preprocessing is also introduced and studied. Adaptive Support Vector Machines (ASVM) and some efficient algorithms are given to deal with massive data sets in support vector classifications. Versatility and efficiency of the new proposed approaches are studied on real data sets and via Monte Carlo sim- ulation experiments

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1

    Get PDF
    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl

    Data models for dataset drift controls in machine learning with optical images

    Get PDF
    Camera images are ubiquitous in machine learning research. They also play a central role in the delivery of important public services spanning medicine or environmental surveying. However, the application of machine learning models in these domains has been limited because of robustness concerns. A primary failure mode are performance drops due to differences between the training and deployment data. While there are methods to prospectively validate the robustness of machine learning models to such dataset drifts, existing approaches do not account for explicit models of machine learning’s primary object of interest: the data. This limits our ability to study and understand the relationship between data generation and downstream machine learning model performance in a physically accurate manner. In this study, we demonstrate how to overcome this limitation by pairing traditional machine learning with physical optics to obtain explicit and differentiable data models. We demonstrate how such data models can be constructed for image data and used to control downstream machine learning model performance related to dataset drift. The findings are distilled into three applications. First, drift synthesis enables the controlled generation of physically faithful drift test cases to power model selection and targeted generalization. Second, the gradient connection between machine learning task model and data model allows advanced, precise tolerancing of task model sensitivity to changes in the data generation. These drift forensics can be used to precisely specify the acceptable data environments in which a task model may be run. Third, drift optimization opens up the possibility to create drifts that can help the task model learn better faster, effectively optimizing the data generating process itself to support the downstream machine vision task. This is an interesting upgrade to existing imaging pipelines which traditionally have been optimized to be consumed by human users but not machine learning models. The data models require access to raw sensor images as commonly processed at scale in industry domains such as microscopy, biomedicine, autonomous vehicles or remote sensing. Alongside the data model code we release two datasets to the public that we collected as part of this work. In total, the two datasets, Raw-Microscopy and Raw-Drone, comprise 1,488 scientifically calibrated reference raw sensor measurements, 8,928 raw intensity variations as well as 17,856 images processed through twelve data models with different configurations. A guide to access the open code and datasets is available at https://github.com/aiaudit-org/raw2logit

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Hierarchical Reinforcement Learning for Spoken Dialogue Systems

    Get PDF
    Institute for Communicating and Collaborative SystemsThis thesis focuses on the problem of scalable optimization of dialogue behaviour in speech-based conversational systems using reinforcement learning. Most previous investigations in dialogue strategy learning have proposed flat reinforcement learning methods, which are more suitable for small-scale spoken dialogue systems. This research formulates the problem in terms of Semi-Markov Decision Processes (SMDPs), and proposes two hierarchical reinforcement learning methods to optimize sub-dialogues rather than full dialogues. The first method uses a hierarchy of SMDPs, where every SMDP ignores irrelevant state variables and actions in order to optimize a sub-dialogue. The second method extends the first one by constraining every SMDP in the hierarchy with prior expert knowledge. The latter method proposes a learning algorithm called 'HAM+HSMQ-Learning', which combines two existing algorithms in the literature of hierarchical reinforcement learning. Whilst the first method generates fully-learnt behaviour, the second one generates semi-learnt behaviour. In addition, this research proposes a heuristic dialogue simulation environment for automatic dialogue strategy learning. Experiments were performed on simulated and real environments based on a travel planning spoken dialogue system. Experimental results provided evidence to support the following claims: First, both methods scale well at the cost of near-optimal solutions, resulting in slightly longer dialogues than the optimal solutions. Second, dialogue strategies learnt with coherent user behaviour and conservative recognition error rates can outperform a reasonable hand-coded strategy. Third, semi-learnt dialogue behaviours are a better alternative (because of their higher overall performance) than hand-coded or fully-learnt dialogue behaviours. Last, hierarchical reinforcement learning dialogue agents are feasible and promising for the (semi) automatic design of adaptive behaviours in larger-scale spoken dialogue systems. This research makes the following contributions to spoken dialogue systems which learn their dialogue behaviour. First, the Semi-Markov Decision Process (SMDP) model was proposed to learn spoken dialogue strategies in a scalable way. Second, the concept of 'partially specified dialogue strategies' was proposed for integrating simultaneously hand-coded and learnt spoken dialogue behaviours into a single learning framework. Third, an evaluation with real users of hierarchical reinforcement learning dialogue agents was essential to validate their effectiveness in a realistic environment
    corecore