73,021 research outputs found

    From Space to Earth: assessing the legal framework of big data in the space technologies sector

    Get PDF
    The amount of data and information collected and processed by space technologies, in particular through Earth observation programs and telecommunication services, is increasing day by day. Meanwhile, the socio-economic environment surrounding such activities is rapidly changing: data are employed for new purposes, private actors are involved in the dissemination of these information and new users get access to space data. In this context, international law is required to addressed the new challenges deriving from such changes such as the protection of data protection and the right to privacy. The paper aims at analysing the state of the art, focusing on the main provisions of international space law, including both hard law and soft law instruments, covering the collection and dissemination of space data, especially those coming from remote sensing satellites. Then, the focus will shift on assessing the scope of application of new legal provisions which are applicable to this matter, in particular the recent regulation on data protection adopted by the European Union (GDPR). In conclusion, the research aims at assessing a legal framework for the big data, which represents a necessary step to minimize the risks and maximize the benefits stemming from those technologies

    Big Earth Data for Cultural Heritage in the Copernicus Era

    Get PDF
    Digital data is stepping in its golden age characterized by an increasing growth of both classical and emerging big earth data along with trans- and multidisciplinary methodological approaches and services addressed to the study, preservation and sustainable exploitation of cultural heritage (CH). The availability of new digital technologies has opened new possibilities, unthinkable only a few years ago for cultural heritage. The currently available digital data, tools and services with particular reference to Copernicus initiatives make possible to characterize and understand the state of conservation of CH for preventive restoration and opened up a frontier of possibilities for the discovery of archaeological sites from above and also for supporting their excavation, monitoring and preservation. The different areas of intervention require the availability and integration of rigorous information from different sources for improving knowledge and interpretation, risk assessment and management in order to make more successful all the actions oriented to the preservation of cultural properties. One of the biggest challenges is to fully involve the citizen also from an emotional point of view connecting “pixels with people” and “bridging” remote sensing and social sensing

    Global Innovations in Measurement and Evaluation

    Get PDF
    We researched the latest developments in theory and practice in measurement and evaluation. And we found that new thinking, techniques, and technology are influencing and improving practice. This report highlights 8 developments that we think have the greatest potential to improve evaluation and programme design, and the careful collection and use of data. In it, we seek to inform and inspire—to celebrate what is possible, and encourage wider application of these ideas

    FogGIS: Fog Computing for Geospatial Big Data Analytics

    Full text link
    Cloud Geographic Information Systems (GIS) has emerged as a tool for analysis, processing and transmission of geospatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client. This paper developed a Fog-based framework named Fog GIS for mining analytics from geospatial data. We built a prototype using Intel Edison, an embedded microprocessor. We validated the FogGIS by doing preliminary analysis. including compression, and overlay analysis. Results showed that Fog computing hold a great promise for analysis of geospatial data. We used several open source compression techniques for reducing the transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (09-11 December, 2016) Indian Institute of Technology (Banaras Hindu University) Varanasi, Indi

    Ecological Science Infrastructure for Sustainability Transformations in Rangelands

    Get PDF
    Sustainability transformations—deliberate and radical shifts in values, governance, and management regimes to achieve sustainability—are needed in rangelands as in other components of the Earth system. We review four concepts comprising an ecological science infrastructure to support such transformations. The foundation is standard measurement of rangeland conditions in the field, especially vegetation and soil properties that underpin the environmental aspects of sustainability. Big data resources, especially gridded spatial datasets produced by models and remote sensing, can be combined with field data and computational approaches to upscale information about rangeland conditions and produce additional indicators of ecosystem functions and services. State and transition models (STMs) linked to land types provide a means to interpret indicators and link interpretations to sustainable land management practices to manage change. Technologies for climate adaptation in rangelands also need to be linked to STM databases. Web and mobile technologies can put multifaceted science knowledge into the hands of pastoralists worldwide to support transformational changes in how rangelands are managed

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
    • …
    corecore